Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics
Guangmei Deng , Honggao Liu , Jieqing Li , Yuanzhong Wang
{"title":"Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics","authors":"Guangmei Deng , Honggao Liu , Jieqing Li , Yuanzhong Wang","doi":"10.1016/j.saa.2024.125421","DOIUrl":null,"url":null,"abstract":"<div><div><em>Boletus bainiugan</em> has high nutritional and economic values. As one of the potential medicinal active ingredients, nucleosides have important research significance. Porcini mushrooms fraud is frequently detected on the market, including substitute inferior into superior and lack of geographical origin’s certification. This behavior results in economic loss and health damage to consumers. Fourier transform near-infrared (FT-NIR) spectroscopy is a fast, efficient and reliable analytical tool. In the present study, the effect of source environment (climatic factors) on nucleoside content is analyzed for the first time. Then, the FT-NIR spectroscopy to study the origin traceability and content prediction of <em>Boletus bainiugan</em> are utilized. The results indicate that the nucleoside content is associated with precipitation and temperature. The combination of synchronous two-dimensional correlation spectroscopy (2DCOS) with residual neural networks (ResNet) model obtains the precise identification of the origin of <em>Boletus bainiugan</em>, with an accuracy of 100%. In the prediction models of content for uridine, guanosine, and adenosine, the optimal coefficient of determination of predictive set (R<sup>2</sup><sub>P</sub>) is 0.901, and the optimum residual prediction deviation (RPD) is 3.178. FT-NIR spectroscopy has proven to be an environmentally friendly and non-destructive analytical tool for accurate origin traceability and content prediction.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125421"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524015877","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Boletus bainiugan has high nutritional and economic values. As one of the potential medicinal active ingredients, nucleosides have important research significance. Porcini mushrooms fraud is frequently detected on the market, including substitute inferior into superior and lack of geographical origin’s certification. This behavior results in economic loss and health damage to consumers. Fourier transform near-infrared (FT-NIR) spectroscopy is a fast, efficient and reliable analytical tool. In the present study, the effect of source environment (climatic factors) on nucleoside content is analyzed for the first time. Then, the FT-NIR spectroscopy to study the origin traceability and content prediction of Boletus bainiugan are utilized. The results indicate that the nucleoside content is associated with precipitation and temperature. The combination of synchronous two-dimensional correlation spectroscopy (2DCOS) with residual neural networks (ResNet) model obtains the precise identification of the origin of Boletus bainiugan, with an accuracy of 100%. In the prediction models of content for uridine, guanosine, and adenosine, the optimal coefficient of determination of predictive set (R2P) is 0.901, and the optimum residual prediction deviation (RPD) is 3.178. FT-NIR spectroscopy has proven to be an environmentally friendly and non-destructive analytical tool for accurate origin traceability and content prediction.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.