{"title":"Absence of Altermagnetic Spin Splitting Character in Rutile Oxide RuO_{2}.","authors":"Jiayu Liu, Jie Zhan, Tongrui Li, Jishan Liu, Shufan Cheng, Yuming Shi, Liwei Deng, Meng Zhang, Chihao Li, Jianyang Ding, Qi Jiang, Mao Ye, Zhengtai Liu, Zhicheng Jiang, Siyu Wang, Qian Li, Yanwu Xie, Yilin Wang, Shan Qiao, Jinsheng Wen, Yan Sun, Dawei Shen","doi":"10.1103/PhysRevLett.133.176401","DOIUrl":null,"url":null,"abstract":"<p><p>Rutile RuO_{2} has been posited as a potential d-wave altermagnetism candidate, with a predicted significant spin splitting up to 1.4 eV. Despite accumulating theoretical predictions and transport measurements, direct spectroscopic observation of spin splitting has remained elusive. Here, we employ spin- and angle-resolved photoemission spectroscopy to investigate the band structures and spin polarization of thin-film and single-crystal RuO_{2}. Contrary to expectations of altermagnetism, our analysis indicates that RuO_{2}'s electronic structure aligns with those predicted under nonmagnetic conditions, exhibiting no evidence of the hypothesized spin splitting. Additionally, we observe significant in-plane spin polarization of the low-lying bulk bands, which is antisymmetric about the high-symmetry plane and contrary to the d-wave spin texture due to time-reversal symmetry breaking in altermagnetism. These findings definitively challenge the altermagnetic order previously proposed for rutile RuO_{2}, prompting a reevaluation of its magnetic properties.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 17","pages":"176401"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.176401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rutile RuO_{2} has been posited as a potential d-wave altermagnetism candidate, with a predicted significant spin splitting up to 1.4 eV. Despite accumulating theoretical predictions and transport measurements, direct spectroscopic observation of spin splitting has remained elusive. Here, we employ spin- and angle-resolved photoemission spectroscopy to investigate the band structures and spin polarization of thin-film and single-crystal RuO_{2}. Contrary to expectations of altermagnetism, our analysis indicates that RuO_{2}'s electronic structure aligns with those predicted under nonmagnetic conditions, exhibiting no evidence of the hypothesized spin splitting. Additionally, we observe significant in-plane spin polarization of the low-lying bulk bands, which is antisymmetric about the high-symmetry plane and contrary to the d-wave spin texture due to time-reversal symmetry breaking in altermagnetism. These findings definitively challenge the altermagnetic order previously proposed for rutile RuO_{2}, prompting a reevaluation of its magnetic properties.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks