Identification of Pipeline Intrusion Signals Based on ICEEMDAN-FE-AIT and F-ELM in the uwDAS System

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-10-02 DOI:10.1109/JSEN.2024.3468878
Changyan Ran;Peijun Xiao;Zhihui Luo;Xiaoan Chen
{"title":"Identification of Pipeline Intrusion Signals Based on ICEEMDAN-FE-AIT and F-ELM in the uwDAS System","authors":"Changyan Ran;Peijun Xiao;Zhihui Luo;Xiaoan Chen","doi":"10.1109/JSEN.2024.3468878","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of low signal identification accuracy due to various noises in pipeline intrusion signals collected by the ultraweak fiber grating distributed acoustic sensors (uwDAS) system, we propose an identification method on top of a new denoising approach for pipeline intrusion signals in this article. The denoising approach uses improved complete ensemble empirical mode decomposition with adaptive noise, fuzzy entropy, and adaptive interval thresholding (ICEEMDAN-FE-AIT). The fisher score feature selection and extreme learning machine (F-ELM) are combined to identify the intrusion signals. We build a data acquisition platform in the laboratory to collect the pipeline intrusion signals, including chainsaw, mechanical vibration, excavator digging, artificial digging, and no-intrusion. Experiments show that the ratio of noise signal to noise reduction (\n<inline-formula> <tex-math>${R}_{\\text {DNSN}}$ </tex-math></inline-formula>\n) of ICEEMDAN-FE-AIT is better than those of four other denoising methods, namely, variational mode decomposition and permutation entropy (VMD-PE) method; the ICEEMDAN-PE-AIT method; the ICEEMDAN, energy density and average periodicity, and AIT (ICEEMDAN-ET-AIT) method; and the ICEEMDAN-FE and wavelet soft threshold denoising (ICEEMDAN-FE-WSTD) method. The values of \n<inline-formula> <tex-math>${R}_{\\text {DNSN}}$ </tex-math></inline-formula>\n for the five signals are 15.2043, 16.7654, 14.9815, 15.5541, and 13.5428 dB, respectively. The average identification accuracy is 93.27%, in subsequent identification experiments using F-ELM.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36874-36881"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10704575/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of low signal identification accuracy due to various noises in pipeline intrusion signals collected by the ultraweak fiber grating distributed acoustic sensors (uwDAS) system, we propose an identification method on top of a new denoising approach for pipeline intrusion signals in this article. The denoising approach uses improved complete ensemble empirical mode decomposition with adaptive noise, fuzzy entropy, and adaptive interval thresholding (ICEEMDAN-FE-AIT). The fisher score feature selection and extreme learning machine (F-ELM) are combined to identify the intrusion signals. We build a data acquisition platform in the laboratory to collect the pipeline intrusion signals, including chainsaw, mechanical vibration, excavator digging, artificial digging, and no-intrusion. Experiments show that the ratio of noise signal to noise reduction ( ${R}_{\text {DNSN}}$ ) of ICEEMDAN-FE-AIT is better than those of four other denoising methods, namely, variational mode decomposition and permutation entropy (VMD-PE) method; the ICEEMDAN-PE-AIT method; the ICEEMDAN, energy density and average periodicity, and AIT (ICEEMDAN-ET-AIT) method; and the ICEEMDAN-FE and wavelet soft threshold denoising (ICEEMDAN-FE-WSTD) method. The values of ${R}_{\text {DNSN}}$ for the five signals are 15.2043, 16.7654, 14.9815, 15.5541, and 13.5428 dB, respectively. The average identification accuracy is 93.27%, in subsequent identification experiments using F-ELM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
uwDAS系统中基于ICEEMDAN-FE-AIT和F-ELM的管道入侵信号识别
针对超弱光纤光栅分布式声学传感器(uwDAS)系统采集的管道入侵信号因各种噪声而导致信号识别准确率低的问题,我们在本文中提出了一种基于新型去噪方法的管道入侵信号识别方法。该去噪方法使用了改进的完全集合经验模式分解与自适应噪声、模糊熵和自适应区间阈值(ICEEMDAN-FE-AIT)。Fisher score 特征选择和极端学习机(F-ELM)相结合来识别入侵信号。我们在实验室搭建了一个数据采集平台,用于采集管道入侵信号,包括电锯、机械振动、挖掘机挖掘、人工挖掘和无入侵信号。实验表明,ICEEMDAN-FE-AIT 的噪声信噪比({R}_{text {DNSN}}$ )优于其他四种去噪方法,即变模分解和置换熵(VMD-PE)方法;ICEEMDAN-PE-AIT方法;ICEEMDAN、能量密度和平均周期性及AIT(ICEEMDAN-ET-AIT)方法;以及ICEEMDAN-FE和小波软阈值去噪(ICEEMDAN-FE-WSTD)方法。五种信号的 ${R}_{text\ {DNSN}}$ 值分别为 15.2043、16.7654、14.9815、15.5541 和 13.5428 dB。在随后使用 F-ELM 进行的识别实验中,平均识别准确率为 93.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Journal Publication Information Table of Contents Front Cover IEEE Sensors Council A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1