{"title":"High-Sensitivity SPR Fiber-Optic Biosensor With Nano-Grating Structure for Pathogenic Bacteria Detection in Drinking Water","authors":"Ananya Banerjee;Rahul Rahul;Jaisingh Thangaraj;Santosh Kumar","doi":"10.1109/JSEN.2024.3469028","DOIUrl":null,"url":null,"abstract":"Drinking water that contains microbiological contamination can lead to the spread of dangerous waterborne diseases, posing a significant risk to human health. It is important to detect and identify microbial pathogens (such as bacteria, fungi, viruses, and parasites) in water accurately to prevent these negative situations. In this work, we have proposed an optical-fiber (OF) surface plasmon resonance (SPR)-based sensor for the detection of pathogenic bacteria that are Bacillus anthracis, Vibrio cholera, Enterococcus faecalis, and Escherichia coli in the drinking water. The finite element method (FEM) is implemented to determine the wavelength sensitivity (WS). The sensor shows excellent performance and can identify the samples externally. The sensor has gold (Au) and gallium nitride (GaN) as the plasmonic sensing layer in nano-grating structures over the surface of the multimode fiber (MMF). It can detect all four bacteria from the drinking water with the highest sensitivity achieved is 21276.6 nm/RIU for E. coli. The performance parameters: detection accuracy (DA), signal-to-noise ratio (SNR), resolution (R), detection limit (DL), quality factor (QF), and figure of merit (FOM), are also evaluated. The results produced by the sensor are superior in comparison to the previously reported biosensors.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36882-36890"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10704577/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Drinking water that contains microbiological contamination can lead to the spread of dangerous waterborne diseases, posing a significant risk to human health. It is important to detect and identify microbial pathogens (such as bacteria, fungi, viruses, and parasites) in water accurately to prevent these negative situations. In this work, we have proposed an optical-fiber (OF) surface plasmon resonance (SPR)-based sensor for the detection of pathogenic bacteria that are Bacillus anthracis, Vibrio cholera, Enterococcus faecalis, and Escherichia coli in the drinking water. The finite element method (FEM) is implemented to determine the wavelength sensitivity (WS). The sensor shows excellent performance and can identify the samples externally. The sensor has gold (Au) and gallium nitride (GaN) as the plasmonic sensing layer in nano-grating structures over the surface of the multimode fiber (MMF). It can detect all four bacteria from the drinking water with the highest sensitivity achieved is 21276.6 nm/RIU for E. coli. The performance parameters: detection accuracy (DA), signal-to-noise ratio (SNR), resolution (R), detection limit (DL), quality factor (QF), and figure of merit (FOM), are also evaluated. The results produced by the sensor are superior in comparison to the previously reported biosensors.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice