RoadRunner M&M - Learning Multi-Range Multi-Resolution Traversability Maps for Autonomous Off-Road Navigation

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-01 DOI:10.1109/LRA.2024.3490404
Manthan Patel;Jonas Frey;Deegan Atha;Patrick Spieler;Marco Hutter;Shehryar Khattak
{"title":"RoadRunner M&M - Learning Multi-Range Multi-Resolution Traversability Maps for Autonomous Off-Road Navigation","authors":"Manthan Patel;Jonas Frey;Deegan Atha;Patrick Spieler;Marco Hutter;Shehryar Khattak","doi":"10.1109/LRA.2024.3490404","DOIUrl":null,"url":null,"abstract":"Autonomous robot navigation in off–road environments requires a comprehensive understanding of the terrain geometry and traversability. The degraded perceptual conditions and sparse geometric information at longer ranges make the problem challenging especially when driving at high speeds. Furthermore, the sensing–to–mapping latency and the look–ahead map range can limit the maximum speed of the vehicle. Building on top of the recent work RoadRunner, in this work, we address the challenge of long-range (\n<inline-formula><tex-math>$\\pm 100 \\,\\text{m}$</tex-math></inline-formula>\n) traversability estimation. Our RoadRunner (M&M) is an end-to-end learning-based framework that directly predicts the traversability and elevation maps at multiple ranges (\n<inline-formula><tex-math>$\\pm 50 \\,\\text{m}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\pm 100 \\,\\text{m}$</tex-math></inline-formula>\n) and resolutions (\n<inline-formula><tex-math>$0.2 \\,\\text{m}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$0.8 \\,\\text{m}$</tex-math></inline-formula>\n) taking as input multiple images and a LiDAR voxel map. Our method is trained in a self–supervised manner by leveraging the dense supervision signal generated by fusing predictions from an existing traversability estimation stack (X-Racer) in hindsight and satellite Digital Elevation Maps. RoadRunner M&M achieves a significant improvement of up to 50% for elevation mapping and 30% for traversability estimation over RoadRunner, and is able to predict in 30% more regions compared to X-Racer while achieving real–time performance. Experiments on various out–of–distribution datasets also demonstrate that our data-driven approach starts to generalize to novel unstructured environments. We integrate our proposed framework in closed–loop with the path planner to demonstrate autonomous high–speed off–road robotic navigation in challenging real–world environments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11425-11432"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740919/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous robot navigation in off–road environments requires a comprehensive understanding of the terrain geometry and traversability. The degraded perceptual conditions and sparse geometric information at longer ranges make the problem challenging especially when driving at high speeds. Furthermore, the sensing–to–mapping latency and the look–ahead map range can limit the maximum speed of the vehicle. Building on top of the recent work RoadRunner, in this work, we address the challenge of long-range ( $\pm 100 \,\text{m}$ ) traversability estimation. Our RoadRunner (M&M) is an end-to-end learning-based framework that directly predicts the traversability and elevation maps at multiple ranges ( $\pm 50 \,\text{m}$ , $\pm 100 \,\text{m}$ ) and resolutions ( $0.2 \,\text{m}$ , $0.8 \,\text{m}$ ) taking as input multiple images and a LiDAR voxel map. Our method is trained in a self–supervised manner by leveraging the dense supervision signal generated by fusing predictions from an existing traversability estimation stack (X-Racer) in hindsight and satellite Digital Elevation Maps. RoadRunner M&M achieves a significant improvement of up to 50% for elevation mapping and 30% for traversability estimation over RoadRunner, and is able to predict in 30% more regions compared to X-Racer while achieving real–time performance. Experiments on various out–of–distribution datasets also demonstrate that our data-driven approach starts to generalize to novel unstructured environments. We integrate our proposed framework in closed–loop with the path planner to demonstrate autonomous high–speed off–road robotic navigation in challenging real–world environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RoadRunner M&M - 学习多范围多分辨率可穿越性地图,用于自主越野导航
机器人在越野环境中自主导航需要全面了解地形的几何形状和可穿越性。在较远距离上,感知条件的退化和几何信息的稀疏使问题变得具有挑战性,尤其是在高速行驶时。此外,从感知到绘图的延迟和前视地图范围也会限制车辆的最高速度。在最近的研究成果 RoadRunner 的基础上,我们在本研究中解决了远距离($\pm 100 \,\text{m}$)可穿越性估计的难题。我们的RoadRunner (M&M)是一个基于端到端学习的框架,可以直接预测多种范围($\pm 50 \text{m}$、$\pm 100 \text{m}$)和分辨率($0.2 \text{m}$、$0.8 \text{m}$)下的可穿越性和高程图,并将多幅图像和LiDAR体素图作为输入。我们的方法是以自我监督的方式进行训练的,即利用现有的可穿越性估计堆栈(X-Racer)在事后视角和卫星数字高程图中融合预测所产生的密集监督信号。与 RoadRunner 相比,RoadRunner M&M 在高程测绘和可穿越性估算方面分别实现了高达 50% 和 30% 的显著改进,与 X-Racer 相比,能够预测更多 30% 的区域,同时实现了实时性能。在各种非分布数据集上进行的实验还表明,我们的数据驱动方法开始适用于新型非结构化环境。我们将所提出的框架与路径规划器进行闭环整合,演示了在具有挑战性的真实环境中的自主高速越野机器人导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1