{"title":"Efficient Discovery of Actual Causality Using Abstraction Refinement","authors":"Arshia Rafieioskouei;Borzoo Bonakdarpour","doi":"10.1109/TCAD.2024.3448299","DOIUrl":null,"url":null,"abstract":"Causality is the relationship where one event contributes to the production of another, with the cause being partly responsible for the effect and the effect partly dependent on the cause. In this article, we propose a novel and effective method to formally reason about the causal effect of events in engineered systems, with application for finding the root-cause of safety violations in embedded and cyber-physical systems. We are motivated by the notion of actual causality by Halpern and Pearl, which focuses on the causal effect of particular events rather than type-level causality, which attempts to make general statements about scientific and natural phenomena. Our first contribution is formulating discovery of actual causality in computing systems modeled by transition systems as an satisfiability modulo theory solving problem. Since datasets for causality analysis tend to be large, in order to tackle the scalability problem of automated formal reasoning, our second contribution is a novel technique based on abstraction refinement that allows identifying for actual causes within smaller abstract causal models. We demonstrate the effectiveness of our approach (by several orders of magnitude) using three case studies to find the actual cause of violations of safety in 1) a neural network controller for a mountain car; 2) a controller for a Lunar Lander obtained by reinforcement learning; and 3) an MPC controller for an F-16 autopilot simulator.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"4274-4285"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745858/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Causality is the relationship where one event contributes to the production of another, with the cause being partly responsible for the effect and the effect partly dependent on the cause. In this article, we propose a novel and effective method to formally reason about the causal effect of events in engineered systems, with application for finding the root-cause of safety violations in embedded and cyber-physical systems. We are motivated by the notion of actual causality by Halpern and Pearl, which focuses on the causal effect of particular events rather than type-level causality, which attempts to make general statements about scientific and natural phenomena. Our first contribution is formulating discovery of actual causality in computing systems modeled by transition systems as an satisfiability modulo theory solving problem. Since datasets for causality analysis tend to be large, in order to tackle the scalability problem of automated formal reasoning, our second contribution is a novel technique based on abstraction refinement that allows identifying for actual causes within smaller abstract causal models. We demonstrate the effectiveness of our approach (by several orders of magnitude) using three case studies to find the actual cause of violations of safety in 1) a neural network controller for a mountain car; 2) a controller for a Lunar Lander obtained by reinforcement learning; and 3) an MPC controller for an F-16 autopilot simulator.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.