{"title":"A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy","authors":"Wei Tang;Anmin Huang;Enbo Liu;Jiale Wu;Renyuan Zhang","doi":"10.1109/JSEN.2024.3472470","DOIUrl":null,"url":null,"abstract":"Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS with a particle filter, presenting a novel method based on a two-step particle adjustment strategy. Our algorithm first uses GNSS data to evaluate the current particles and adjust their distribution if necessary. Subsequently, we use laser measurements to evaluate old particles and the reliability of the GNSS data, adjusting the particle distribution for correction. In addition, we use statistical features of point clouds for laser measurements, which transform the global map into a series of normal distribution models, and use these models to match with 3-D laser scans for particle state evaluation. Our method improves the processing efficiency of 3-D point cloud data and fully utilizes its 3-D features during localization. Experimental results demonstrate that our algorithm achieves higher localization accuracy on the publicly available KITTI dataset and in real campus environments. In addition, our algorithm consistently delivers precise localization in both open areas and GNSS-unavailable scenarios, showcasing superior reliability.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"37846-37858"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10709853/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS with a particle filter, presenting a novel method based on a two-step particle adjustment strategy. Our algorithm first uses GNSS data to evaluate the current particles and adjust their distribution if necessary. Subsequently, we use laser measurements to evaluate old particles and the reliability of the GNSS data, adjusting the particle distribution for correction. In addition, we use statistical features of point clouds for laser measurements, which transform the global map into a series of normal distribution models, and use these models to match with 3-D laser scans for particle state evaluation. Our method improves the processing efficiency of 3-D point cloud data and fully utilizes its 3-D features during localization. Experimental results demonstrate that our algorithm achieves higher localization accuracy on the publicly available KITTI dataset and in real campus environments. In addition, our algorithm consistently delivers precise localization in both open areas and GNSS-unavailable scenarios, showcasing superior reliability.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice