P. Habeeb;Deepak D’Souza;Kamal Lodaya;Pavithra Prabhakar
{"title":"Interval Image Abstraction for Verification of Camera-Based Autonomous Systems","authors":"P. Habeeb;Deepak D’Souza;Kamal Lodaya;Pavithra Prabhakar","doi":"10.1109/TCAD.2024.3448306","DOIUrl":null,"url":null,"abstract":"We propose an abstraction-refinement-based algorithm for the problem of verifying the safety of a camera-based autonomous system in a synthetic 3D-scene, based on the notion of interval images. An interval image is an abstract data structure that represents a set of images in a 3D-scene. We give a computer graphics style rendering algorithm to efficiently compute interval images from a given region. Our proposed abstraction-refinement algorithm leverages recent abstract interpretation tools for neural networks. We have implemented and evaluated the proposed technique on complex 3D-scenes, demonstrating its effectiveness and scalability in comparison with earlier techniques.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"4310-4321"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745846/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an abstraction-refinement-based algorithm for the problem of verifying the safety of a camera-based autonomous system in a synthetic 3D-scene, based on the notion of interval images. An interval image is an abstract data structure that represents a set of images in a 3D-scene. We give a computer graphics style rendering algorithm to efficiently compute interval images from a given region. Our proposed abstraction-refinement algorithm leverages recent abstract interpretation tools for neural networks. We have implemented and evaluated the proposed technique on complex 3D-scenes, demonstrating its effectiveness and scalability in comparison with earlier techniques.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.