Approximate Conformance Checking for Closed-Loop Systems With Neural Network Controllers

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems Pub Date : 2024-11-06 DOI:10.1109/TCAD.2024.3445813
P. Habeeb;Lipsy Gupta;Pavithra Prabhakar
{"title":"Approximate Conformance Checking for Closed-Loop Systems With Neural Network Controllers","authors":"P. Habeeb;Lipsy Gupta;Pavithra Prabhakar","doi":"10.1109/TCAD.2024.3445813","DOIUrl":null,"url":null,"abstract":"In this article, we consider the problem of checking approximate conformance of closed-loop systems with the same plant but different neural network (NN) controllers. First, we introduce a notion of approximate conformance on NNs, which allows us to quantify semantically the deviations in closed-loop system behaviors with different NN controllers. Next, we consider the problem of computationally checking this notion of approximate conformance on two NNs. We reduce this problem to that of reachability analysis on a combined NN, thereby, enabling the use of existing NN verification tools for conformance checking. Our experimental results on an autonomous rocket landing system demonstrate the feasibility of checking approximate conformance on different NNs trained for the same dynamics, as well as the practical semantic closeness exhibited by the corresponding closed-loop systems.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"4322-4333"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745797/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the problem of checking approximate conformance of closed-loop systems with the same plant but different neural network (NN) controllers. First, we introduce a notion of approximate conformance on NNs, which allows us to quantify semantically the deviations in closed-loop system behaviors with different NN controllers. Next, we consider the problem of computationally checking this notion of approximate conformance on two NNs. We reduce this problem to that of reachability analysis on a combined NN, thereby, enabling the use of existing NN verification tools for conformance checking. Our experimental results on an autonomous rocket landing system demonstrate the feasibility of checking approximate conformance on different NNs trained for the same dynamics, as well as the practical semantic closeness exhibited by the corresponding closed-loop systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络控制器对闭环系统进行近似一致性检查
在本文中,我们考虑了检查具有相同工厂但不同神经网络 (NN) 控制器的闭环系统的近似一致性问题。首先,我们引入了神经网络近似一致性的概念,通过这一概念,我们可以从语义上量化不同神经网络控制器的闭环系统行为偏差。接下来,我们将考虑对两个 NN 的近似一致性概念进行计算检查的问题。我们将这一问题简化为对组合 NN 的可达性分析,从而使现有的 NN 验证工具能够用于一致性检查。我们在一个自主火箭着陆系统上的实验结果表明,在为相同动力学训练的不同 NN 上检查近似一致性是可行的,相应的闭环系统也表现出了实际的语义接近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
期刊最新文献
Table of Contents NOVELLA: Nonvolatile Last-Level Cache Bypass for Optimizing Off-Chip Memory Energy FreePrune: An Automatic Pruning Framework Across Various Granularities Based on Training-Free Evaluation CaBaFL: Asynchronous Federated Learning via Hierarchical Cache and Feature Balance MaskedHLS: Domain-Specific High-Level Synthesis of Masked Cryptographic Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1