Change Point Detection in Multi-Channel Time Series via a Time-Invariant Representation

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2023-12-26 DOI:10.1109/TKDE.2023.3347356
Zhenxiang Cao;Nick Seeuws;Maarten De Vos;Alexander Bertrand
{"title":"Change Point Detection in Multi-Channel Time Series via a Time-Invariant Representation","authors":"Zhenxiang Cao;Nick Seeuws;Maarten De Vos;Alexander Bertrand","doi":"10.1109/TKDE.2023.3347356","DOIUrl":null,"url":null,"abstract":"Change Point Detection (CPD) refers to the task of identifying abrupt changes in the characteristics or statistics of time series data. Recent advancements have led to a shift away from traditional model-based CPD approaches, which rely on predefined statistical distributions, toward neural network-based and distribution-free methods using autoencoders. However, many state-of-the-art methods in this category often neglect to explicitly leverage spatial information across multiple channels, making them less effective at detecting changes in cross-channel statistics. In this paper, we introduce an unsupervised, distribution-free CPD method that explicitly incorporates both temporal and spatial (cross-channel) information in multi-channel time series data based on the so-called Time-Invariant Representation (TIRE) autoencoder. Our evaluation, conducted on both simulated and real-life datasets, illustrates the significant advantages of our proposed multi-channel TIRE (MC-TIRE) method, which consistently delivers more accurate CPD results.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7743-7756"},"PeriodicalIF":8.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10374276/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Change Point Detection (CPD) refers to the task of identifying abrupt changes in the characteristics or statistics of time series data. Recent advancements have led to a shift away from traditional model-based CPD approaches, which rely on predefined statistical distributions, toward neural network-based and distribution-free methods using autoencoders. However, many state-of-the-art methods in this category often neglect to explicitly leverage spatial information across multiple channels, making them less effective at detecting changes in cross-channel statistics. In this paper, we introduce an unsupervised, distribution-free CPD method that explicitly incorporates both temporal and spatial (cross-channel) information in multi-channel time series data based on the so-called Time-Invariant Representation (TIRE) autoencoder. Our evaluation, conducted on both simulated and real-life datasets, illustrates the significant advantages of our proposed multi-channel TIRE (MC-TIRE) method, which consistently delivers more accurate CPD results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过时不变表示法检测多通道时间序列中的变化点
变化点检测(CPD)指的是识别时间序列数据特征或统计数据中的突然变化。最近的进步促使人们从依赖预定义统计分布的传统基于模型的 CPD 方法转向基于神经网络和使用自动编码器的无分布方法。然而,这类方法中的许多最先进方法往往忽略了明确利用多通道的空间信息,使其在检测跨通道统计变化方面效果不佳。在本文中,我们介绍了一种无监督、无分布的 CPD 方法,该方法基于所谓的时间不变表示(TIRE)自动编码器,在多通道时间序列数据中明确纳入了时间和空间(跨通道)信息。我们在模拟数据集和实际数据集上进行了评估,结果表明我们提出的多通道 TIRE(MC-TIRE)方法具有显著优势,能持续提供更准确的 CPD 结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1