Polysulfide-mediating properties of nickel phosphide carbon composite nanofibers as free-standing interlayers for lithium–sulfur batteries†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-11-15 DOI:10.1039/D4RA07285E
Ayaulym Belgibayeva, Gulderaiym Turarova, Akmaral Dangaliyeva, Fail Sultanov, Arailym Nurpeissova, Aliya Mukanova and Zhumabay Bakenov
{"title":"Polysulfide-mediating properties of nickel phosphide carbon composite nanofibers as free-standing interlayers for lithium–sulfur batteries†","authors":"Ayaulym Belgibayeva, Gulderaiym Turarova, Akmaral Dangaliyeva, Fail Sultanov, Arailym Nurpeissova, Aliya Mukanova and Zhumabay Bakenov","doi":"10.1039/D4RA07285E","DOIUrl":null,"url":null,"abstract":"<p >Issues such as the polysulfide shuttle effect and sulfur loss challenge the development of high-energy-density lithium–sulfur batteries. To address these limitations, a tailored approach is introduced using nickel phosphide carbon composite nanofibers (Ni<small><sub><em>x</em></sub></small>P/C) with controlled surface oxidation layers. These nanofibers feature a hierarchical structure that leverages the benefits of nickel phosphide nanoparticles and a carbonaceous matrix to enable efficient sulfur encapsulation and suppress polysulfide diffusion. Comprehensive characterization and electrochemical testing reveal that Ni<small><sub><em>x</em></sub></small>P/C, when employed as interlayers in a cell with a bio-waste-derived carbon-based sulfur cathode, significantly enhance electrochemical performance by increasing charge–discharge capacities and reducing charge-transfer resistance. Post-mortem analyses further show effective polysulfide trapping and conversion on the cathode side, preventing their shuttle to the anode, which results in a remarkable cycle stability of up to 200 cycles at 2C with a high discharge capacity of about 800 mA h g<small><sup>−1</sup></small>. These findings confirm the potential of Ni<small><sub><em>x</em></sub></small>P/C to improve lithium–sulfur battery technologies and demonstrate their applicability in diverse lithium–sulfur cell configurations.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 49","pages":" 36593-36601"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07285e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07285e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Issues such as the polysulfide shuttle effect and sulfur loss challenge the development of high-energy-density lithium–sulfur batteries. To address these limitations, a tailored approach is introduced using nickel phosphide carbon composite nanofibers (NixP/C) with controlled surface oxidation layers. These nanofibers feature a hierarchical structure that leverages the benefits of nickel phosphide nanoparticles and a carbonaceous matrix to enable efficient sulfur encapsulation and suppress polysulfide diffusion. Comprehensive characterization and electrochemical testing reveal that NixP/C, when employed as interlayers in a cell with a bio-waste-derived carbon-based sulfur cathode, significantly enhance electrochemical performance by increasing charge–discharge capacities and reducing charge-transfer resistance. Post-mortem analyses further show effective polysulfide trapping and conversion on the cathode side, preventing their shuttle to the anode, which results in a remarkable cycle stability of up to 200 cycles at 2C with a high discharge capacity of about 800 mA h g−1. These findings confirm the potential of NixP/C to improve lithium–sulfur battery technologies and demonstrate their applicability in diverse lithium–sulfur cell configurations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为锂硫电池独立夹层的磷化镍碳复合纳米纤维的多硫化物介导特性†。
多硫穿梭效应和硫损失等问题给高能量密度锂硫电池的开发带来了挑战。为了解决这些局限性,我们引入了一种定制方法,即使用具有可控表面氧化层的磷化镍碳复合纳米纤维(NixP/C)。这些纳米纤维具有分层结构,充分利用了磷化镍纳米颗粒和碳基质的优点,从而实现了高效的硫封装并抑制了多硫化物的扩散。综合表征和电化学测试表明,NixP/C 作为夹层应用于带有生物废料碳基硫阴极的电池中时,通过提高充放电容量和降低电荷转移电阻,显著提高了电化学性能。死后分析进一步表明,多硫化物在阴极一侧得到了有效的捕获和转化,阻止了它们向阳极的穿梭,从而实现了在 2C 下长达 200 个循环的显著循环稳定性,以及约 800 mA h g-1 的高放电容量。这些发现证实了 NixP/C 在改进锂硫电池技术方面的潜力,并证明了其在各种锂硫电池配置中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Combining de novo molecular design with semiempirical protein–ligand binding free energy calculation† Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films† Regulation of oxidative stress enzymes in Candida auris by Dermaseptin: potential implications for antifungal drug discovery Design of an LiF-rich interface layer using high-concentration fluoroethylene carbonate and lithium bis(fluorosulfonyl)imide (LiFSI) to stabilize Li metal batteries A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1