Wiener-Hopf solution of the free energy TBA problem and instanton sectors in the O(3) sigma model

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2024-11-14 DOI:10.1007/JHEP11(2024)093
Zoltán Bajnok, János Balog, István Vona
{"title":"Wiener-Hopf solution of the free energy TBA problem and instanton sectors in the O(3) sigma model","authors":"Zoltán Bajnok,&nbsp;János Balog,&nbsp;István Vona","doi":"10.1007/JHEP11(2024)093","DOIUrl":null,"url":null,"abstract":"<p>Perturbation theory in asymptotically free quantum field theories is asymptotic. The factorially growing perturbative coefficients carry information about non-perturbative corrections, which can be related to renormalons and instantons. Using the Wiener-Hopf technique we determine the full analytic solution for the free energy density in the two dimensional O(<i>N</i>) sigma models. For <i>N</i> &gt; 3 there are no instantons, and we found that the perturbative series carries all the information about the non-perturbative corrections. However, in the O(3) case, we identify several non-perturbative sectors that are not related to the asymptotics of the perturbative series. The number of sectors depends on the observables: for the ground-state energy density we identify three sectors, which we attribute to instantons. For the free energy density in the running perturbative coupling we found infinitely many sectors.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)093.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)093","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Perturbation theory in asymptotically free quantum field theories is asymptotic. The factorially growing perturbative coefficients carry information about non-perturbative corrections, which can be related to renormalons and instantons. Using the Wiener-Hopf technique we determine the full analytic solution for the free energy density in the two dimensional O(N) sigma models. For N > 3 there are no instantons, and we found that the perturbative series carries all the information about the non-perturbative corrections. However, in the O(3) case, we identify several non-perturbative sectors that are not related to the asymptotics of the perturbative series. The number of sectors depends on the observables: for the ground-state energy density we identify three sectors, which we attribute to instantons. For the free energy density in the running perturbative coupling we found infinitely many sectors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
O(3)西格玛模型中自由能TBA问题和瞬子扇形的维纳-霍普夫解
渐近自由量子场论中的扰动理论是渐近的。因式增长的微扰系数携带着非微扰修正的信息,这些修正可能与重正子和瞬子有关。利用维纳-霍普夫技术,我们确定了二维 O(N) 西格玛模型中自由能密度的全解析解。对于 N > 3,不存在瞬子,我们发现微扰序列携带了非微扰修正的所有信息。然而,在 O(3) 的情况下,我们发现了几个与微扰序列渐近无关的非微扰扇区。扇区的数量取决于观测指标:对于基态能量密度,我们确定了三个扇区,并将其归因于瞬子。对于运行扰动耦合中的自由能量密度,我们发现了无限多的扇区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Euclidean wormholes in holographic RG flows Addendum to: Combined analysis of neutrino decoherence at reactor experiments Toward double copy on arbitrary backgrounds Revisiting the minimal Nelson-Barr model Interpretations of the ATLAS measurements of Higgs boson production and decay rates and differential cross-sections in pp collisions at \( \sqrt{s} \) = 13 TeV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1