Larry Murcia Terranova, Christian Cardillo, Giuliano Aretusi
{"title":"An enhanced beam model incorporating a hysteresis-based solid friction damping mechanism for cementitious materials","authors":"Larry Murcia Terranova, Christian Cardillo, Giuliano Aretusi","doi":"10.1007/s00161-024-01335-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate a dynamic internal dissipation mechanism in the context of cement-based materials by introducing a 1D-enhanced micromorphic beam model with a dynamic internal friction term. Here, we consider an inherent feature in concrete-like materials arising from the multi-scale structure, namely, microcracks. Thus, we assume that the internal dissipation of the energy depends on the overall relative sliding displacement of the opposite faces in the microcracks under the effects of an applied cyclic load whenever no significant phenomena related to damage occur at the macroscopic level. The dynamic friction term is based on a well-known model for dry friction in solids due to P. R. Dahl, where the friction force depends only on the sliding displacement and evolves in time, reproducing an elastoplastic behavior. The model proposed in this paper takes into account a mechanical energy interchange between both bending and shear distortion in the beam with the sliding occurring at the microcracks, a storage of mechanical energy because of the asperities inside the faces of the microcracks, and the dissipation of the energy that follows from the interaction between the bending and the microcracks. Numerical simulations of the kinematic descriptors and the dissipative cycles are also provided by using the Finite Element Method and the commercial software COMSOL Multiphysics<sup>®</sup>.\n</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01335-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate a dynamic internal dissipation mechanism in the context of cement-based materials by introducing a 1D-enhanced micromorphic beam model with a dynamic internal friction term. Here, we consider an inherent feature in concrete-like materials arising from the multi-scale structure, namely, microcracks. Thus, we assume that the internal dissipation of the energy depends on the overall relative sliding displacement of the opposite faces in the microcracks under the effects of an applied cyclic load whenever no significant phenomena related to damage occur at the macroscopic level. The dynamic friction term is based on a well-known model for dry friction in solids due to P. R. Dahl, where the friction force depends only on the sliding displacement and evolves in time, reproducing an elastoplastic behavior. The model proposed in this paper takes into account a mechanical energy interchange between both bending and shear distortion in the beam with the sliding occurring at the microcracks, a storage of mechanical energy because of the asperities inside the faces of the microcracks, and the dissipation of the energy that follows from the interaction between the bending and the microcracks. Numerical simulations of the kinematic descriptors and the dissipative cycles are also provided by using the Finite Element Method and the commercial software COMSOL Multiphysics®.
在这项工作中,我们通过引入带有动态内部摩擦项的一维增强微观梁模型,研究了水泥基材料的动态内部耗散机制。在此,我们考虑了混凝土类材料因多尺度结构而产生的固有特征,即微裂缝。因此,我们假定,当宏观层面没有出现明显的破坏现象时,能量的内部耗散取决于微裂缝中相对面在外加循环载荷作用下的整体相对滑动位移。动态摩擦项基于 P. R. Dahl 提出的著名固体干摩擦模型,其中摩擦力仅取决于滑动位移并随时间变化,再现了弹塑性行为。本文提出的模型考虑了梁的弯曲变形和剪切变形与微裂缝处发生的滑动之间的机械能交换、微裂缝面内的尖角所产生的机械能储存以及弯曲和微裂缝之间的相互作用所产生的能量耗散。此外,还使用有限元法和商用软件 COMSOL Multiphysics® 对运动描述符和耗散循环进行了数值模拟。
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.