{"title":"Temperature-sensitive shape memory polyamide elastomers with tunable segments: achieving excellent performances and application prospects","authors":"Chengke Yuan, Yingchun Li, Jianyu Xue, Jia Mi, Yu Wang, Zhexenbek Toktarbay","doi":"10.1007/s42114-024-01064-5","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoplastic polyamide elastomers (TPAEs) possess remarkable characteristics such as high-temperature tolerance, superior mechanical properties, and the shape memory effect (SME). The current study develops a type of TPAE with SME by fabricating the long carbon chain polyamide (PA512) and polyethylene glycol (PEG) through a two-step melt polycondensation process. The properties of TPAEs were investigated by varying the PA512 prepolymer’s molecular weight and the amount of PEG. During synthesizing TPAEs with SME, the crucial balance of COOH and OH groups was skillfully achieved by introducing biobased butanediol (BDO). The chemical structure of TPAEs is confirmed by FTIR and <sup>1</sup>H NMR tests. By meticulously engineering the PA512 molecular weight and refining the PEG domain content, TPAEs are fabricated to elongate at a break of 592.4% at room temperature while maintaining a tensile strength of 23.1 MPa. TPAEs, which have two distinct melting temperatures, exhibit microphase separation between the PEG and PA512 domains. This phenomenon is further corroborated by the scanning electron microscope (SEM) test. Additionally, TPAEs exhibit the SME, which can fix a temporary shape when heated, twisted, and cooled, and then recover to its original shape upon reheating, with TPAE230 demonstrating the most outstanding shape memory effect, achieving an average shape fixity ratio of 91.2% and a shape recovery ratio of 94.4%. This behavior is attributed to the fixing force provided by the PEG domains and the entropy elasticity of the physically cross-linked PA512 domains. The findings indicate that TPAEs exhibit enhanced SME in response to temperature changes. Leveraging this property, developing a temperature-sensitive device holds promise for breakthroughs in elastic temperature sensing applications.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01064-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoplastic polyamide elastomers (TPAEs) possess remarkable characteristics such as high-temperature tolerance, superior mechanical properties, and the shape memory effect (SME). The current study develops a type of TPAE with SME by fabricating the long carbon chain polyamide (PA512) and polyethylene glycol (PEG) through a two-step melt polycondensation process. The properties of TPAEs were investigated by varying the PA512 prepolymer’s molecular weight and the amount of PEG. During synthesizing TPAEs with SME, the crucial balance of COOH and OH groups was skillfully achieved by introducing biobased butanediol (BDO). The chemical structure of TPAEs is confirmed by FTIR and 1H NMR tests. By meticulously engineering the PA512 molecular weight and refining the PEG domain content, TPAEs are fabricated to elongate at a break of 592.4% at room temperature while maintaining a tensile strength of 23.1 MPa. TPAEs, which have two distinct melting temperatures, exhibit microphase separation between the PEG and PA512 domains. This phenomenon is further corroborated by the scanning electron microscope (SEM) test. Additionally, TPAEs exhibit the SME, which can fix a temporary shape when heated, twisted, and cooled, and then recover to its original shape upon reheating, with TPAE230 demonstrating the most outstanding shape memory effect, achieving an average shape fixity ratio of 91.2% and a shape recovery ratio of 94.4%. This behavior is attributed to the fixing force provided by the PEG domains and the entropy elasticity of the physically cross-linked PA512 domains. The findings indicate that TPAEs exhibit enhanced SME in response to temperature changes. Leveraging this property, developing a temperature-sensitive device holds promise for breakthroughs in elastic temperature sensing applications.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.