Ultra-High Radial Elastic Aerogel Fibers for Thermal Insulation Textile

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-15 DOI:10.1002/adfm.202417873
Jiahui Wang, Lipeng Liu, Wenlian Dong, Junhui Tao, Rui Fu, Yinghui Liu, Xin Yang, Hanqing Yu, Huazheng Sai
{"title":"Ultra-High Radial Elastic Aerogel Fibers for Thermal Insulation Textile","authors":"Jiahui Wang, Lipeng Liu, Wenlian Dong, Junhui Tao, Rui Fu, Yinghui Liu, Xin Yang, Hanqing Yu, Huazheng Sai","doi":"10.1002/adfm.202417873","DOIUrl":null,"url":null,"abstract":"When nanoporous aerogels with excellent thermal insulation performance are processed into 1D fibers, they have great potential for application in the field of personal thermal management. However, coping with the impact of external forces, especially radial extrusion, and maintaining the macro morphology and microstructure of aerogels during use are remaining issues. To address these challenges, this study proposes a method that uses ultrafine and ultra-highly entangled bacterial cellulose nanofibers as the basis to achieve high radial elasticity by forming an isomorphic coating of rigid silica on the soft gel skeleton of aerogel fibers. The obtained aerogel fibers can achieve an elastic recovery of 88% over 50 compression cycles under 90% strain, and they can be knotted, woven into textiles, and are washable. This strategy improves the radial compression resistance of aerogel fibers, providing rich possibilities for the development of aerogel fibers with excellent mechanical properties.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"44 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417873","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When nanoporous aerogels with excellent thermal insulation performance are processed into 1D fibers, they have great potential for application in the field of personal thermal management. However, coping with the impact of external forces, especially radial extrusion, and maintaining the macro morphology and microstructure of aerogels during use are remaining issues. To address these challenges, this study proposes a method that uses ultrafine and ultra-highly entangled bacterial cellulose nanofibers as the basis to achieve high radial elasticity by forming an isomorphic coating of rigid silica on the soft gel skeleton of aerogel fibers. The obtained aerogel fibers can achieve an elastic recovery of 88% over 50 compression cycles under 90% strain, and they can be knotted, woven into textiles, and are washable. This strategy improves the radial compression resistance of aerogel fibers, providing rich possibilities for the development of aerogel fibers with excellent mechanical properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于隔热纺织品的超高径向弹性气凝胶纤维
当具有优异隔热性能的纳米多孔气凝胶被加工成一维纤维时,它们在个人热管理领域具有巨大的应用潜力。然而,如何应对外力(尤其是径向挤压)的影响以及在使用过程中保持气凝胶的宏观形态和微观结构仍然是个问题。为了应对这些挑战,本研究提出了一种方法,以超细和超高缠结细菌纤维素纳米纤维为基础,通过在气凝胶纤维的软凝胶骨架上形成刚性二氧化硅的同构涂层来实现高径向弹性。获得的气凝胶纤维在 90% 的应变下,经过 50 次压缩循环后,弹性恢复率可达 88%,而且可以打结、编织成纺织品,并可水洗。这种策略提高了气凝胶纤维的径向抗压性,为开发具有优异机械性能的气凝胶纤维提供了丰富的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enhanced Mechanical-Magnetic Coupling and Bioinspired Structural Design of Magnetorheological Elastomers Band Structure and Spin-State-Induced Electronic Configuration Regulation for Efficient Sulfur Redox Reaction The Out-of-Plane C─S Bonds Boosting Reversible Redox in Copper Sulfide Cathodes for Ultradurable Magnesium Battery 12.86% Efficient Cu2ZnSn(S,Se)4 Thin Film Solar Cells via Inkjet Printing with 2-Methoxyethanol-Based Air-Stable Precursor Ink Atomically Dispersed Scandium in Cuprous Oxide Weakens *CO Adsorption to Boost Carbon Dioxide Electroreduction Toward C2 Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1