Breaking Boundaries: Unifying Imaging and Compression for HDR Image Compression

Xuelin Shen;Linfeng Pan;Zhangkai Ni;Yulin He;Wenhan Yang;Shiqi Wang;Sam Kwong
{"title":"Breaking Boundaries: Unifying Imaging and Compression for HDR Image Compression","authors":"Xuelin Shen;Linfeng Pan;Zhangkai Ni;Yulin He;Wenhan Yang;Shiqi Wang;Sam Kwong","doi":"10.1109/TIP.2025.3527365","DOIUrl":null,"url":null,"abstract":"High Dynamic Range (HDR) images present unique challenges for Learned Image Compression (LIC) due to their complex domain distribution compared to Low Dynamic Range (LDR) images. In coding practice, HDR-oriented LIC typically adopts preprocessing steps (e.g., perceptual quantization and tone mapping operation) to align the distributions between LDR and HDR images, which inevitably comes at the expense of perceptual quality. To address this challenge, we rethink the HDR imaging process which involves fusing multiple exposure LDR images to create an HDR image and propose a novel HDR image compression paradigm, Unifying Imaging and Compression (HDR-UIC). The key innovation lies in establishing a seamless pipeline from image capture to delivery and enabling end-to-end training and optimization. Specifically, a Mixture-ATtention (MAT)-based compression backbone merges LDR features while simultaneously generating a compact representation. Meanwhile, the Reference-guided Misalignment-aware feature Enhancement (RME) module mitigates ghosting artifacts caused by misalignment in the LDR branches, maintaining fidelity without introducing additional information. Furthermore, we introduce an Appearance Redundancy Removal (ARR) module to optimize coding resource allocation among LDR features, thereby enhancing the final HDR compression performance. Extensive experimental results demonstrate the efficacy of our approach, showing significant improvements over existing state-of-the-art HDR compression schemes. Our code is available at: <uri>https://github.com/plf1999/HDR-UIC</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"510-521"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10841962/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High Dynamic Range (HDR) images present unique challenges for Learned Image Compression (LIC) due to their complex domain distribution compared to Low Dynamic Range (LDR) images. In coding practice, HDR-oriented LIC typically adopts preprocessing steps (e.g., perceptual quantization and tone mapping operation) to align the distributions between LDR and HDR images, which inevitably comes at the expense of perceptual quality. To address this challenge, we rethink the HDR imaging process which involves fusing multiple exposure LDR images to create an HDR image and propose a novel HDR image compression paradigm, Unifying Imaging and Compression (HDR-UIC). The key innovation lies in establishing a seamless pipeline from image capture to delivery and enabling end-to-end training and optimization. Specifically, a Mixture-ATtention (MAT)-based compression backbone merges LDR features while simultaneously generating a compact representation. Meanwhile, the Reference-guided Misalignment-aware feature Enhancement (RME) module mitigates ghosting artifacts caused by misalignment in the LDR branches, maintaining fidelity without introducing additional information. Furthermore, we introduce an Appearance Redundancy Removal (ARR) module to optimize coding resource allocation among LDR features, thereby enhancing the final HDR compression performance. Extensive experimental results demonstrate the efficacy of our approach, showing significant improvements over existing state-of-the-art HDR compression schemes. Our code is available at: https://github.com/plf1999/HDR-UIC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突破边界:统一成像和压缩的HDR图像压缩
与低动态范围(LDR)图像相比,高动态范围(HDR)图像由于其复杂的域分布,对学习图像压缩(LIC)提出了独特的挑战。在编码实践中,面向HDR的LIC通常采用预处理步骤(如感知量化和色调映射操作)来对齐LDR和HDR图像之间的分布,这不可避免地以牺牲感知质量为代价。为了解决这一挑战,我们重新思考了HDR成像过程,包括融合多个曝光LDR图像来创建HDR图像,并提出了一种新的HDR图像压缩范式,即统一成像和压缩(HDR- uic)。关键的创新在于建立从图像捕获到交付的无缝管道,并实现端到端的培训和优化。具体来说,基于混合注意(MAT)的压缩主干在合并LDR特征的同时生成紧凑的表示。同时,参考引导的失调感知功能增强(RME)模块减轻了LDR分支中由失调引起的重影工件,在不引入额外信息的情况下保持保真度。此外,我们还引入了外观冗余去除(ARR)模块来优化编码资源在LDR特征之间的分配,从而提高最终的HDR压缩性能。大量的实验结果证明了我们的方法的有效性,显示出比现有的最先进的HDR压缩方案有显着改进。我们的代码可在:https://github.com/plf1999/HDR-UIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Text-Video Retrieval Performance With Low-Salient but Discriminative Objects Breaking Boundaries: Unifying Imaging and Compression for HDR Image Compression A Pyramid Fusion MLP for Dense Prediction IFENet: Interaction, Fusion, and Enhancement Network for V-D-T Salient Object Detection NeuralDiffuser: Neuroscience-Inspired Diffusion Guidance for fMRI Visual Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1