Harnessing ChatGPT for predictive financial factor generation: A new frontier in financial analysis and forecasting

Yuhan Cheng, Yuming Zeng, Jie Zou
{"title":"Harnessing ChatGPT for predictive financial factor generation: A new frontier in financial analysis and forecasting","authors":"Yuhan Cheng, Yuming Zeng, Jie Zou","doi":"10.1016/j.bar.2024.101507","DOIUrl":null,"url":null,"abstract":"The search for predictive financial factors in stock pricing of companies has long been a key focus in accounting and finance, but traditional methods often require complex, subjective inputs. This paper introduces a method using ChatGPT-4 to generate financial factors based on the structure of financial statements and key variables, eliminating the need for numerical data. Leveraging GPT’s natural language processing capabilities and extensive knowledge base, our approach efficiently generates factors that are highly predictive of future returns and exhibit robustness over time, unaffected by variations in different conversational windows. Regression analysis demonstrates that these factors cannot be linearly explained by traditional financial factors. This paper highlights AI’s potential in revolutionizing financial analysis and decision-making.","PeriodicalId":501001,"journal":{"name":"The British Accounting Review","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British Accounting Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bar.2024.101507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The search for predictive financial factors in stock pricing of companies has long been a key focus in accounting and finance, but traditional methods often require complex, subjective inputs. This paper introduces a method using ChatGPT-4 to generate financial factors based on the structure of financial statements and key variables, eliminating the need for numerical data. Leveraging GPT’s natural language processing capabilities and extensive knowledge base, our approach efficiently generates factors that are highly predictive of future returns and exhibit robustness over time, unaffected by variations in different conversational windows. Regression analysis demonstrates that these factors cannot be linearly explained by traditional financial factors. This paper highlights AI’s potential in revolutionizing financial analysis and decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ChatGPT 生成预测性金融因子:金融分析和预测的新领域
长期以来,寻找公司股票定价中的预测性财务因子一直是会计和金融领域的重点,但传统方法往往需要复杂的主观输入。本文介绍了一种利用 ChatGPT-4 生成基于财务报表结构和关键变量的财务因子的方法,无需数字数据。利用 GPT 的自然语言处理能力和广泛的知识库,我们的方法可以高效地生成对未来回报具有高度预测性的因子,并且随着时间的推移表现出稳健性,不受不同对话窗口变化的影响。回归分析表明,这些因子无法用传统的金融因子进行线性解释。本文凸显了人工智能在革新金融分析和决策方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the dynamics of treasury bond yields: From term structure modelling to economic scenario generation Labor litigation and corporate cash holdings: Insights from the textual analysis of judicial documents Bankruptcy forecasting — Market information with ensemble model Earnings management in local government healthcare reporting: Financial distress vs. peer influence? Does more effective director monitoring make management guidance more credible?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1