Mixed Reality-based MEP construction progress monitoring: Evaluation of methods for mesh-to-mesh comparison

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-11-08 DOI:10.1016/j.autcon.2024.105852
Boan Tao, Frédéric Bosché, Jiajun Li
{"title":"Mixed Reality-based MEP construction progress monitoring: Evaluation of methods for mesh-to-mesh comparison","authors":"Boan Tao,&nbsp;Frédéric Bosché,&nbsp;Jiajun Li","doi":"10.1016/j.autcon.2024.105852","DOIUrl":null,"url":null,"abstract":"<div><div>Visually monitoring progress and geometric quality on site using Mixed Reality (MR) and overlaid Building Information Model (BIM model) is challenging, particularly in complex contexts like complex mechanical, electrical, and plumbing (MEP) systems. This paper proposes and evaluates four individual methods and three combined ones for automated object recognition and deviation evaluation, based on the matching and comparison of the 3D mesh captured on site by MR systems with the mesh geometry of the elements in the (as-designed) BIM model. The four individual methods include: (1) Bounding Box Occupation, (2) Point-to-Surface Distance, (3) Voxel Occupation, (4) Feature Matching. Three combined methods are Method <span><math><mrow><mn>1</mn><mo>∪</mo><mn>4</mn></mrow></math></span>, Method <span><math><mrow><mn>2</mn><mo>∪</mo><mn>4</mn></mrow></math></span> and Method <span><math><mrow><mn>3</mn><mo>∪</mo><mn>4</mn></mrow></math></span> (i.e. combining methods 1 and 4, 2 and 4, and 3 and 4, respectively). The methods are evaluated using both synthetic and real data of MEP construction works, with the Method <span><math><mrow><mn>1</mn><mo>∪</mo><mn>4</mn></mrow></math></span> yielding the best performance.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105852"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005880","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Visually monitoring progress and geometric quality on site using Mixed Reality (MR) and overlaid Building Information Model (BIM model) is challenging, particularly in complex contexts like complex mechanical, electrical, and plumbing (MEP) systems. This paper proposes and evaluates four individual methods and three combined ones for automated object recognition and deviation evaluation, based on the matching and comparison of the 3D mesh captured on site by MR systems with the mesh geometry of the elements in the (as-designed) BIM model. The four individual methods include: (1) Bounding Box Occupation, (2) Point-to-Surface Distance, (3) Voxel Occupation, (4) Feature Matching. Three combined methods are Method 14, Method 24 and Method 34 (i.e. combining methods 1 and 4, 2 and 4, and 3 and 4, respectively). The methods are evaluated using both synthetic and real data of MEP construction works, with the Method 14 yielding the best performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合现实的 MEP 施工进度监测:评估网格间比较方法
使用混合现实(MR)和叠加建筑信息模型(BIM 模型)对现场进度和几何质量进行可视化监控是一项挑战,尤其是在复杂的环境中,如复杂的机械、电气和管道系统(MEP)。本文提出并评估了四种单独的方法和三种组合方法,这些方法基于混合现实系统在现场捕捉的三维网格与(按设计)BIM 模型中元素的网格几何形状的匹配和比较,进行自动对象识别和偏差评估。四种单独的方法包括(1) 边框占位法,(2) 点到面距离法,(3) 象素占位法,(4) 特征匹配法。三种组合方法分别是方法 1∪4、方法 2∪4、方法 3∪4(即分别将方法 1 和 4、方法 2 和 4、方法 3 和 4 组合在一起)。使用 MEP 建筑工程的合成数据和真实数据对这些方法进行了评估,其中方法 1∪4 的性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Spatiotemporal deep learning for multi-attribute prediction of excavation-induced risk Evaluation of shield-tunnel segment assembly quality using a copula model and numerical simulation Structural design and optimization of adaptive soft adhesion bionic climbing robot Optimizing Railway Track Tamping and Geometry Fine-Tuning Allocation Using a Neural Network-Based Solver Automated detection of underwater dam damage using remotely operated vehicles and deep learning technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1