{"title":"Numerical and experimental investigation of a two-stage thermochemical water-splitting reactor based on a cerium oxide reduction–oxidation cycle","authors":"Paula Rojas, Nicolás Alegría, Mario Toledo","doi":"10.1016/j.enconman.2024.119217","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change has made clear the need to decarbonize the global energy matrix, and green hydrogen has emerged as a promising alternative fuel. In this framework, this work investigates the green hydrogen production by means of a two-stage thermochemical water-splitting reactor heated by both a parabolic dish receiver and a photovoltaic heater. A mathematical model is proposed to simulate reduction–oxidation process for the solar-powered reactor composed of a porous cerium oxide medium. Experimental and numerical thermal profiles show good agreement, with a high temperature in the reduction stage (>1100 K) and a lower temperature in the oxidation stage (860–715 K). Green hydrogen productions show maximum values close to 100 ppm and 2000 <span><math><mrow><mi>μ</mi><mi>m</mi><mi>o</mi><msub><mi>l</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></msub><mo>/</mo><msub><mi>g</mi><mrow><mi>C</mi><mi>e</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></math></span>, for experimental and numerical tests, respectively. It is concluded that the photovoltaic heater is more relevant than the solar concentration heater, and that green hydrogen production could be improved by allowing longer residence times for the reduction–oxidation stages.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"323 ","pages":"Article 119217"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011580","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change has made clear the need to decarbonize the global energy matrix, and green hydrogen has emerged as a promising alternative fuel. In this framework, this work investigates the green hydrogen production by means of a two-stage thermochemical water-splitting reactor heated by both a parabolic dish receiver and a photovoltaic heater. A mathematical model is proposed to simulate reduction–oxidation process for the solar-powered reactor composed of a porous cerium oxide medium. Experimental and numerical thermal profiles show good agreement, with a high temperature in the reduction stage (>1100 K) and a lower temperature in the oxidation stage (860–715 K). Green hydrogen productions show maximum values close to 100 ppm and 2000 , for experimental and numerical tests, respectively. It is concluded that the photovoltaic heater is more relevant than the solar concentration heater, and that green hydrogen production could be improved by allowing longer residence times for the reduction–oxidation stages.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.