Claudia Szczech, Adrien Broquet, Ana-Catalina Plesa, Aymeric Fleury, Michaela Walterová, Alexander Stark, Jürgen Oberst
{"title":"Relaxation States of Large Impact Basins on Mercury Based on MESSENGER Data","authors":"Claudia Szczech, Adrien Broquet, Ana-Catalina Plesa, Aymeric Fleury, Michaela Walterová, Alexander Stark, Jürgen Oberst","doi":"10.1029/2024GL110748","DOIUrl":null,"url":null,"abstract":"<p>The crustal structure of Mercury's large impact basins provides valuable insights into the planet's geological history. For a warm crust, a post-impact basin structure will viscously relax with inward flow of crustal materials toward the basin center. This effect drastically diminishes the crustal thickness contrasts and associated Bouguer gravity contrasts between the basin center and its surroundings. Here, we analyze Bouguer contrasts of 36 basins (diameter <span></span><math>\n <semantics>\n <mrow>\n <mo>></mo>\n </mrow>\n <annotation> ${ >} $</annotation>\n </semantics></math>300 km) located in the northern hemisphere as a proxy for viscoelastic relaxation. Thermal evolution models, assuming the present 3:2 spin-orbit configuration, are used to predict crustal temperatures. Our analysis reveals that the expected correlation between zones of warm crust and low Bouguer contrast from relaxation is not observed in the available data. This suggests that crustal temperatures have changed in the past, potentially due to a change in Mercury's orbit or to a major volcanic event associated with smooth plain formation.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110748","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110748","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The crustal structure of Mercury's large impact basins provides valuable insights into the planet's geological history. For a warm crust, a post-impact basin structure will viscously relax with inward flow of crustal materials toward the basin center. This effect drastically diminishes the crustal thickness contrasts and associated Bouguer gravity contrasts between the basin center and its surroundings. Here, we analyze Bouguer contrasts of 36 basins (diameter 300 km) located in the northern hemisphere as a proxy for viscoelastic relaxation. Thermal evolution models, assuming the present 3:2 spin-orbit configuration, are used to predict crustal temperatures. Our analysis reveals that the expected correlation between zones of warm crust and low Bouguer contrast from relaxation is not observed in the available data. This suggests that crustal temperatures have changed in the past, potentially due to a change in Mercury's orbit or to a major volcanic event associated with smooth plain formation.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.