Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-11-15 DOI:10.1002/adts.202400817
Thi Quynh Hoa Nguyen, Thi Minh Nguyen
{"title":"Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region","authors":"Thi Quynh Hoa Nguyen, Thi Minh Nguyen","doi":"10.1002/adts.202400817","DOIUrl":null,"url":null,"abstract":"Integrating reconfigurable and diverse functionalities into a single metasurface at terahertz (THz) frequencies is an emerging research topic that faces significant challenges. Here, a reconfigurable THz metasurface is proposed, offering diversified functionalities based on the phase transition of vanadium dioxide (<span data-altimg=\"/cms/asset/7497fb8d-65c0-4e0d-9482-0db7710045f9/adts202400817-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400817-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400817:adts202400817-math-0001\" display=\"inline\" location=\"graphic/adts202400817-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">VO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub>${\\rm VO}_2$</annotation></semantics></math></mjx-assistive-mml></mjx-container>). The proposed metasurface can switch from wideband reflection to wideband cross-polarization conversion (CPC) and asymmetric transmission (AT) for linearly polarized waves. When <span data-altimg=\"/cms/asset/7a51d4ec-9d9d-4692-ad34-62480fe0daf3/adts202400817-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400817-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400817:adts202400817-math-0002\" display=\"inline\" location=\"graphic/adts202400817-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">VO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub>${\\rm VO}_2$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is in its fully metallic state, the metasurface efficiently reflects normally incident waves ranging from 0.2 to 2.8 THz, with total reflection exceeding 0.8. When <span data-altimg=\"/cms/asset/5555eccb-ef9c-4bc8-8de3-9c50167a1564/adts202400817-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400817-math-0003.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400817:adts202400817-math-0003\" display=\"inline\" location=\"graphic/adts202400817-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">VO</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub>${\\rm VO}_2$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is in its insulating state, the metasurface achieves nearly perfect wideband cross-polarization conversion with CPC efficiency above 0.99 from 0.46 to 2.67 THz, and excellent AT effect with efficiency over 0.9 from 0.65 to 2.29 THz for normal incidence of linearly polarized waves. Moreover, the high efficiency of CPC and AT effects is maintained over a wide range of incident angles. The proposed switchable metasurface with diverse functionalities is expected to enable cutting-edge research and innovative applications in THz communication, sensing, and imaging.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400817","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating reconfigurable and diverse functionalities into a single metasurface at terahertz (THz) frequencies is an emerging research topic that faces significant challenges. Here, a reconfigurable THz metasurface is proposed, offering diversified functionalities based on the phase transition of vanadium dioxide (VO2${\rm VO}_2$). The proposed metasurface can switch from wideband reflection to wideband cross-polarization conversion (CPC) and asymmetric transmission (AT) for linearly polarized waves. When VO2${\rm VO}_2$ is in its fully metallic state, the metasurface efficiently reflects normally incident waves ranging from 0.2 to 2.8 THz, with total reflection exceeding 0.8. When VO2${\rm VO}_2$ is in its insulating state, the metasurface achieves nearly perfect wideband cross-polarization conversion with CPC efficiency above 0.99 from 0.46 to 2.67 THz, and excellent AT effect with efficiency over 0.9 from 0.65 to 2.29 THz for normal incidence of linearly polarized waves. Moreover, the high efficiency of CPC and AT effects is maintained over a wide range of incident angles. The proposed switchable metasurface with diverse functionalities is expected to enable cutting-edge research and innovative applications in THz communication, sensing, and imaging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于太赫兹波段反射、非对称传输和交叉偏振转换的多功能可重构二氧化钒集成金属表面
在太赫兹(THz)频率下将可重新配置的多种功能集成到单一元表面中是一个新兴的研究课题,面临着巨大的挑战。本文提出了一种可重新配置的太赫兹元表面,基于二氧化钒(VO2${\rm VO}_2$)的相变提供多样化的功能。对于线性极化波,所提出的元表面可以从宽带反射切换到宽带跨极化转换(CPC)和非对称传输(AT)。当 VO2${\rm VO}_2$ 处于完全金属态时,元表面能有效反射 0.2 至 2.8 太赫兹的正常入射波,总反射率超过 0.8。当 VO2${rm VO}_2$ 处于绝缘态时,元表面实现了近乎完美的宽带跨偏振转换,在 0.46 至 2.67 太赫兹范围内的 CPC 效率超过 0.99,在 0.65 至 2.29 太赫兹范围内,对于正常入射的线性偏振波,AT 效应极佳,效率超过 0.9。此外,在很宽的入射角范围内,CPC 和 AT 效应都能保持高效率。这种具有多种功能的可切换元表面有望推动太赫兹通信、传感和成像领域的前沿研究和创新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Role of Ag Nanowires: MXenes in Optimizing Flexible, Semitransparent Bifacial Inverted Perovskite Solar Cells for Building-Integrated Photovoltaics: A SCAPS-1D Modeling Approach Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1