Depth Mapping in Turbid and Deep Waters Using AVIRIS-NG Imagery: A Study in Wax Lake Delta, Louisiana, USA

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2024-11-14 DOI:10.1029/2023wr036875
Siyoon Kwon, Paola Passalacqua, Antoine Soloy, Daniel Jensen, Marc Simard
{"title":"Depth Mapping in Turbid and Deep Waters Using AVIRIS-NG Imagery: A Study in Wax Lake Delta, Louisiana, USA","authors":"Siyoon Kwon, Paola Passalacqua, Antoine Soloy, Daniel Jensen, Marc Simard","doi":"10.1029/2023wr036875","DOIUrl":null,"url":null,"abstract":"Remote sensing has been widely applied to investigate fluvial processes, but depth retrievals face significant constraints in deep and turbid conditions. This study evaluates the potential for depth retrievals under such challenging conditions using NASA's Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery. We employ interpretable machine learning to construct a hyperspectral regressor for water depth and explore the spectral characteristics of deep and turbid waters in Wax Lake Delta (WLD), Louisiana, USA. The reflectance spectra of WLD show minor effects from depth differences due to turbidity. Nevertheless, a Random Forest with Recursive Feature Elimination (RF-RFE) effectively generalizes high and low turbidity cases in a single model, achieving a <span data-altimg=\"/cms/asset/0be6b620-fbe1-4182-9d7f-341f8fb2c089/wrcr27583-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"160\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27583-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27583:wrcr27583-math-0001\" display=\"inline\" location=\"graphic/wrcr27583-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${R}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of <span data-altimg=\"/cms/asset/72894ba6-f575-4543-815c-e895d335c31f/wrcr27583-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"161\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27583-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"addition\" data-semantic-speech=\"0.94 plus or minus 0.005\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27583:wrcr27583-math-0002\" display=\"inline\" location=\"graphic/wrcr27583-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"addition\" data-semantic-speech=\"0.94 plus or minus 0.005\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"float\" data-semantic-type=\"number\">0.94</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,±\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">±</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"float\" data-semantic-type=\"number\">0.005</mn></mrow>$0.94\\pm 0.005$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Moreover, this model shows a maximum detectable depth of approximately 30 m, outperforming other methods. A spectral analysis using Shapley additive explanations (SHAP) points out the importance of learning various spectral bands and non-linear relationships between depth and reflectance. Specifically, the short blue and Near-InfraRed (NIR) bands, with high attenuation coefficients, play a crucial role. This finding highlights attenuation as the key process for deep-depth retrievals. The depth maps of WLD produced by this model accurately capture the spatial distribution of deep river and shallow delta regions. However, the high dependency on short blue and NIR bands leads to discontinuous areas due to the noise sensitivity of these bands. This result highlights a drawback of remote sensing using empirical models. Future research will focus on correcting such discontinuities by integrating data from multiple remote sensing sources.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"98 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036875","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing has been widely applied to investigate fluvial processes, but depth retrievals face significant constraints in deep and turbid conditions. This study evaluates the potential for depth retrievals under such challenging conditions using NASA's Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery. We employ interpretable machine learning to construct a hyperspectral regressor for water depth and explore the spectral characteristics of deep and turbid waters in Wax Lake Delta (WLD), Louisiana, USA. The reflectance spectra of WLD show minor effects from depth differences due to turbidity. Nevertheless, a Random Forest with Recursive Feature Elimination (RF-RFE) effectively generalizes high and low turbidity cases in a single model, achieving a R2${R}^{2}$ of 0.94±0.005$0.94\pm 0.005$. Moreover, this model shows a maximum detectable depth of approximately 30 m, outperforming other methods. A spectral analysis using Shapley additive explanations (SHAP) points out the importance of learning various spectral bands and non-linear relationships between depth and reflectance. Specifically, the short blue and Near-InfraRed (NIR) bands, with high attenuation coefficients, play a crucial role. This finding highlights attenuation as the key process for deep-depth retrievals. The depth maps of WLD produced by this model accurately capture the spatial distribution of deep river and shallow delta regions. However, the high dependency on short blue and NIR bands leads to discontinuous areas due to the noise sensitivity of these bands. This result highlights a drawback of remote sensing using empirical models. Future research will focus on correcting such discontinuities by integrating data from multiple remote sensing sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 AVIRIS-NG 图像绘制浑浊深水水深图:美国路易斯安那州蜡湖三角洲研究
遥感技术已被广泛应用于研究河川过程,但在深水和浑浊条件下,深度检索面临很大的限制。本研究利用美国国家航空航天局(NASA)的机载可见光/红外成像光谱仪-下一代(AVIRIS-NG)图像,评估了在这种具有挑战性的条件下进行深度检索的潜力。我们采用可解释的机器学习来构建水深的高光谱回归器,并探索美国路易斯安那州瓦克斯湖三角洲(WLD)深水和浑水的光谱特征。WLD 的反射光谱显示出浊度对深度差异的轻微影响。然而,具有递归特征消除功能的随机森林(RF-RFE)能在单一模型中有效地概括高浊度和低浊度情况,其 R2${R}^{2}$ 为 0.94±0.005$0.94\pm 0.005$。此外,该模型的最大探测深度约为 30 米,优于其他方法。使用夏普利加法解释(SHAP)进行的光谱分析指出了学习各种光谱带以及深度与反射率之间非线性关系的重要性。具体来说,具有高衰减系数的短蓝光和近红外(NIR)波段起着至关重要的作用。这一发现凸显了衰减是深层深度检索的关键过程。该模型绘制的 WLD 水深图准确捕捉到了河流深层和三角洲浅层区域的空间分布。然而,由于对短蓝光和近红外波段的噪声敏感,对这些波段的高度依赖导致了不连续区域的出现。这一结果凸显了使用经验模型进行遥感的缺点。未来的研究将侧重于通过整合多种遥感来源的数据来纠正这种不连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
A Three-Stage Partitioning Framework for Modeling Mean Annual Groundwater Evapotranspiration Causal Discovery Analysis Reveals Global Sources of Predictability for Regional Flash Droughts Bridging the Gap Between Top-Down and Bottom-Up Climate Vulnerability Assessments: Process Informed Exploratory Scenarios Identify System-Based Water Resource Vulnerabilities Combining a Multi-Lake Model Ensemble and a Multi-Domain CORDEX Climate Data Ensemble for Assessing Climate Change Impacts on Lake Sevan Pollution Source Detection With Low-Cost Low-Accuracy Sensors Through Coupling Forward Data Assimilation and Inverse Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1