A Bio-Based Polybenzoxazine Derived from Diphenolic Acid with Intrinsic Flame Retardancy, High Glass Transition Temperature and Dielectric Properties.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-11-15 DOI:10.1002/marc.202400666
Zhong-Qiong Qin, Xin Wang, Hao-Ran Qin, Xi-Yang Lan, Bao-Xiang Ou, Yuan Hu, Lei Song
{"title":"A Bio-Based Polybenzoxazine Derived from Diphenolic Acid with Intrinsic Flame Retardancy, High Glass Transition Temperature and Dielectric Properties.","authors":"Zhong-Qiong Qin, Xin Wang, Hao-Ran Qin, Xi-Yang Lan, Bao-Xiang Ou, Yuan Hu, Lei Song","doi":"10.1002/marc.202400666","DOIUrl":null,"url":null,"abstract":"<p><p>A bio-based benzoxazine monomer, diphenolic methyl ester hexafluoro diamino benzoxazine (DPME-HFBz), was successfully synthesized from diphenolic acid (DPA), and the chemical structure was successfully verified. The curing kinetics were studied via non-isothermal differential scanning calorimetry (DSC). The activation energies of DPME-HFBz were calculated by Kissinger and Ozawa methods to be 136.15 and 139.92 kJ/mol, respectively, and the reaction order was calculated to be first order. Owing to the large number of hydrogen bonds after polymerization, poly(DPME-HFBz) presented an ultra-high glass transition temperature of 312 °C and a high initial decomposition temperature (350 °C under air and 345 °C under nitrogen). Because of the excellent charring ability (50.2% residue under nitrogen), the LOI value of poly(DPME-HFBz) was as high as 38%. Poly(DPME-HFBz) also exhibited a very low heat release capacity (HRC) of 90 J/(g·K). In addition, poly(DPME-HFBz) had a dielectric constant (Dk) of 1.88 at 1.5 MHz, which was much lower than the Dk of the reported low-dielectric polymers. This work provides an efficient and sustainable strategy for the synthesis of benzoxazine thermosetting materials with excellent comprehensive properties.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400666"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400666","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A bio-based benzoxazine monomer, diphenolic methyl ester hexafluoro diamino benzoxazine (DPME-HFBz), was successfully synthesized from diphenolic acid (DPA), and the chemical structure was successfully verified. The curing kinetics were studied via non-isothermal differential scanning calorimetry (DSC). The activation energies of DPME-HFBz were calculated by Kissinger and Ozawa methods to be 136.15 and 139.92 kJ/mol, respectively, and the reaction order was calculated to be first order. Owing to the large number of hydrogen bonds after polymerization, poly(DPME-HFBz) presented an ultra-high glass transition temperature of 312 °C and a high initial decomposition temperature (350 °C under air and 345 °C under nitrogen). Because of the excellent charring ability (50.2% residue under nitrogen), the LOI value of poly(DPME-HFBz) was as high as 38%. Poly(DPME-HFBz) also exhibited a very low heat release capacity (HRC) of 90 J/(g·K). In addition, poly(DPME-HFBz) had a dielectric constant (Dk) of 1.88 at 1.5 MHz, which was much lower than the Dk of the reported low-dielectric polymers. This work provides an efficient and sustainable strategy for the synthesis of benzoxazine thermosetting materials with excellent comprehensive properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种由二酚酸衍生的生物基聚苯并恶嗪,具有内在阻燃性、高玻璃化转变温度和介电性能。
以二苯酚酸(DPA)为原料,成功合成了一种生物基苯并恶嗪单体--二苯酚酸甲酯六氟二胺苯并恶嗪(DPME-HFBz),并成功验证了其化学结构。通过非等温差示扫描量热法(DSC)研究了固化动力学。通过基辛格法和小泽法计算得出 DPME-HFBz 的活化能分别为 136.15 和 139.92 kJ/mol,反应顺序为一阶。由于聚合后存在大量氢键,聚 DPME-HFBz 具有 312 ℃ 的超高玻璃化转变温度和较高的初始分解温度(空气中为 350 ℃,氮气中为 345 ℃)。由于聚(DPME-HFBz)具有优异的炭化能力(氮气下残留量为 50.2%),其 LOI 值高达 38%。聚(DPME-HFBz)的放热能力(HRC)也非常低,仅为 90 J/(g-K)。此外,聚(DPME-HFBz)在 1.5 MHz 频率下的介电常数(Dk)为 1.88,远低于已报道的低介电聚合物的介电常数。这项研究为合成具有优异综合性能的苯并恶嗪热固性材料提供了一种高效、可持续的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Isoselective Polymerization of 1-Vinylcyclohexene (VCH) and a Terpene Derived Monomer S-4-Isopropenyl-1-vinyl-1-cyclohexene (IVC), and Its Binary Copolymerization with Linear Terpenes. pH-Responsive Protein-Polycation Nanocarriers for Efficient Eradication of Bacterial Biofilms and Intracellular Bacteria. Thermal Treatment Induced Crystal Development and Crystal Orientation Change in Electrospun Coaxial Fibers Comprising Dual Crystalline Polymers. A Bio-Based Polybenzoxazine Derived from Diphenolic Acid with Intrinsic Flame Retardancy, High Glass Transition Temperature and Dielectric Properties. Chiral Self-Assembly of a Pyrene-Appended Glutamylalanine Dipeptide and Its Charge Transfer Complex: Fabrication of Magneto-Responsive Hydrogels and Human Cell Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1