Combining a Chemical Language Model and the Structure-Activity Relationship Matrix Formalism for Generative Design of Potent Compounds with Core Structure and Substituent Modifications.
{"title":"Combining a Chemical Language Model and the Structure-Activity Relationship Matrix Formalism for Generative Design of Potent Compounds with Core Structure and Substituent Modifications.","authors":"Hengwei Chen, Jürgen Bajorath","doi":"10.1021/acs.jcim.4c01781","DOIUrl":null,"url":null,"abstract":"<p><p>In medicinal chemistry, compound optimization relies on the generation of analogue series (AS) for exploring structure-activity relationships (SARs). Potency progression is a critical criterion for advancing AS. During optimization, a key question is which analogues to synthesize next. We introduce a new computational methodology for the extension of AS with potent compounds containing both core structure and substituent modifications at multiple sites, which has been reported for the first time. The approach combines a transformer chemical language model (CLM) with a SAR matrix (SARM) methodology that identifies and organizes structurally related AS. Therefore, the SARM approach was expanded to cover multisite AS. Consensus series extracted from SARMs representing a potency gradient served as input for CLM training to extend test AS with potent analogues. Different model variants were derived and investigated. Both general and fine-tuned models correctly predicted known potent analogues at high positions in probability-based compound rankings and chemically diversified AS through core structure modifications of the generated candidate compounds and substituent replacements at multiple sites.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01781","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In medicinal chemistry, compound optimization relies on the generation of analogue series (AS) for exploring structure-activity relationships (SARs). Potency progression is a critical criterion for advancing AS. During optimization, a key question is which analogues to synthesize next. We introduce a new computational methodology for the extension of AS with potent compounds containing both core structure and substituent modifications at multiple sites, which has been reported for the first time. The approach combines a transformer chemical language model (CLM) with a SAR matrix (SARM) methodology that identifies and organizes structurally related AS. Therefore, the SARM approach was expanded to cover multisite AS. Consensus series extracted from SARMs representing a potency gradient served as input for CLM training to extend test AS with potent analogues. Different model variants were derived and investigated. Both general and fine-tuned models correctly predicted known potent analogues at high positions in probability-based compound rankings and chemically diversified AS through core structure modifications of the generated candidate compounds and substituent replacements at multiple sites.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.