{"title":"Discovery, Biosynthesis, Total Synthesis, and Biological Activities of Solanapyrones: [4 + 2] Cycloaddition-Derived Polyketides of Fungal Origin.","authors":"Roberto G S Berlinck, Elizabeth Skellam","doi":"10.1021/acs.jnatprod.4c00818","DOIUrl":null,"url":null,"abstract":"<p><p>Solanapyrones are metabolites bearing a 3,4-dehydrodecalin moiety isolated from cultures of different fungi that are associated with plant diseases. Research on solanapyrones resulted in the first report of a Diels-Alderase enzyme implicated in natural product biosynthesis related to the formation of the 3,4-dehydrodecalin core. In addition, several total syntheses of solanapyrones have been reported, which are also connected with the formation of the characteristic cycloaddition-derived 3,4-dehydrodecalin moiety. This Review provides the first comprehensive overview on the chemistry, biosynthesis, and biological activities of solanapyrones under the theme of synthetic and biosynthetic research progress on cycloaddition-derived secondary metabolites.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00818","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solanapyrones are metabolites bearing a 3,4-dehydrodecalin moiety isolated from cultures of different fungi that are associated with plant diseases. Research on solanapyrones resulted in the first report of a Diels-Alderase enzyme implicated in natural product biosynthesis related to the formation of the 3,4-dehydrodecalin core. In addition, several total syntheses of solanapyrones have been reported, which are also connected with the formation of the characteristic cycloaddition-derived 3,4-dehydrodecalin moiety. This Review provides the first comprehensive overview on the chemistry, biosynthesis, and biological activities of solanapyrones under the theme of synthetic and biosynthetic research progress on cycloaddition-derived secondary metabolites.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.