Immobilized Horseradish Peroxidase on Enriched Diazo-Activated Silica Gel Harnessed High Biocatalytic Performance at a Steady State in Organic Solvent.
{"title":"Immobilized Horseradish Peroxidase on Enriched Diazo-Activated Silica Gel Harnessed High Biocatalytic Performance at a Steady State in Organic Solvent.","authors":"Ankit Ghosh, Basudev Das, Tirtha Biswas, Biswajit Hansda, Tanay Kumar Mondal, Shailja Mishra, Bhabatosh Mandal, Kaushik Barman, Rahul Mondal","doi":"10.1021/acs.langmuir.4c03443","DOIUrl":null,"url":null,"abstract":"<p><p>Dimethyldichlorosilane (DMDCS), an efficient silane coupling reagent appearing between the -OH groups of silica gel (SG) and picric acid, instantaneously produces a derivative enriched with nitro groups. The nitro group acting as an end-cap terminates the reaction and subsequently was converted into diazo to couple tyrosine's phenol ring via its <i>O</i>-carbon, the inert center to immobilize horseradish peroxidase (HRP) in a multipoint mode. It maintains the status quo of the native enzyme's protein folding and the entire protein groups' chemistry. The molecular formula of the synthesized material was verified and appeared as {Si(OSi)<sub>4</sub> (H<sub>2</sub>O)<sub><i>x</i></sub>}<sub><i>n</i></sub>{-O-Si(CH<sub>3</sub>)<sub>2</sub>-O-C<sub>6</sub>H<sub>2</sub>(N<sup>+</sup>≡N)<sub>3</sub>(HRP)}<sub>4</sub>·<i>y</i>H<sub>2</sub>O; the parameters were evaluated as <i>x</i> = 0.5, <i>n</i> = 1158, and <i>y</i> = 752. The immobilized biocatalyst's activity in organic solvents was 1.5 times better than that in an aqueous medium; it worked smoothly, wherein the activity in both solvents stabilized at six months and continued up to nine months at 63 ± 3% compared to the initial.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03443","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dimethyldichlorosilane (DMDCS), an efficient silane coupling reagent appearing between the -OH groups of silica gel (SG) and picric acid, instantaneously produces a derivative enriched with nitro groups. The nitro group acting as an end-cap terminates the reaction and subsequently was converted into diazo to couple tyrosine's phenol ring via its O-carbon, the inert center to immobilize horseradish peroxidase (HRP) in a multipoint mode. It maintains the status quo of the native enzyme's protein folding and the entire protein groups' chemistry. The molecular formula of the synthesized material was verified and appeared as {Si(OSi)4 (H2O)x}n{-O-Si(CH3)2-O-C6H2(N+≡N)3(HRP)}4·yH2O; the parameters were evaluated as x = 0.5, n = 1158, and y = 752. The immobilized biocatalyst's activity in organic solvents was 1.5 times better than that in an aqueous medium; it worked smoothly, wherein the activity in both solvents stabilized at six months and continued up to nine months at 63 ± 3% compared to the initial.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).