{"title":"Rate-Controlled Washing of Surface-Modified Nanoparticles Using Rationally Designed Supercritical CO<sub>2</sub> Media.","authors":"Yasuhiko Orita, Kai Ikeda, Aoi Muronosono, Thossaporn Wijakmatee, Taishi Kataoka, Yusuke Shimoyama","doi":"10.1021/acs.langmuir.4c02306","DOIUrl":null,"url":null,"abstract":"<p><p>In practical applications of surface-modified nanoparticles (NPs), the washing stage has a number of challenges, such as insufficient washing, long treatment time, and various waste liquors. Cosolvent-enhanced supercritical CO<sub>2</sub> (scCO<sub>2</sub>) is an appealing solvent system for complete, rapid, and eco-friendly washing owing to its high diffusivity and recyclability. In this paper, we report a rapid washing guideline for surface-modified NPs using ethanol-enhanced scCO<sub>2</sub>. Kinetic analysis was performed on the washing behavior of oleic acid-modified NPs mixed with various modifiers (C10 to C18 fatty acids) at 40 °C and 20.0 MPa while designing scCO<sub>2</sub> media based on rationally estimated modifier solubilities. Notably, the scCO<sub>2</sub> medium showed superior washing rates to that of ethanol for various modifiers with a wide range of solubilities in scCO<sub>2</sub>. The washing rate was dependent on solubility and could be organized into two regions, with a threshold value of 0.016 mol kg<sup>-1</sup>: solubility/diffusivity-controlled and diffusivity-controlled washing. These findings provide valuable guidelines for designing cosolvent-enhanced scCO<sub>2</sub> media for the rapid washing of surface-modified NPs.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02306","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In practical applications of surface-modified nanoparticles (NPs), the washing stage has a number of challenges, such as insufficient washing, long treatment time, and various waste liquors. Cosolvent-enhanced supercritical CO2 (scCO2) is an appealing solvent system for complete, rapid, and eco-friendly washing owing to its high diffusivity and recyclability. In this paper, we report a rapid washing guideline for surface-modified NPs using ethanol-enhanced scCO2. Kinetic analysis was performed on the washing behavior of oleic acid-modified NPs mixed with various modifiers (C10 to C18 fatty acids) at 40 °C and 20.0 MPa while designing scCO2 media based on rationally estimated modifier solubilities. Notably, the scCO2 medium showed superior washing rates to that of ethanol for various modifiers with a wide range of solubilities in scCO2. The washing rate was dependent on solubility and could be organized into two regions, with a threshold value of 0.016 mol kg-1: solubility/diffusivity-controlled and diffusivity-controlled washing. These findings provide valuable guidelines for designing cosolvent-enhanced scCO2 media for the rapid washing of surface-modified NPs.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).