Deep eutectic solvents assisted laccase pretreatment for improving enzymatic hydrolysis of corn stover.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-11-15 DOI:10.1007/s00449-024-03102-4
Kexin Lin, Weiting Zhang, Xinyang Fan, Xiaoyan Li, Nuomeng Wang, Shuyu Yu, Lei Lu
{"title":"Deep eutectic solvents assisted laccase pretreatment for improving enzymatic hydrolysis of corn stover.","authors":"Kexin Lin, Weiting Zhang, Xinyang Fan, Xiaoyan Li, Nuomeng Wang, Shuyu Yu, Lei Lu","doi":"10.1007/s00449-024-03102-4","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient and eco-friendly removal of lignin is a critical challenge for bioethanol production from lignocellulosic biomass. Herein, we report the integration of laccase with deep eutectic solvents (DESs) for the pretreatment of corn stover to enhance the production of reducing sugars. Three betaine-based DESs were prepared and tested for their effects on the activity and stability of a bacterial laccase from Bacillus amyloliquefaciens LC02. The aqueous solution of DESs showed no adverse influence on laccase activity, and the laccase thermostability was improved in the presence of DESs. More than 95% of the laccase activity was retained in the DESs solution during the first hour of incubation at 70 °C. A red shift in the fluorescence spectra was observed for the laccase in the presence of DESs, indicating conformational changes. The laccase was able to degrade a dimeric lignin model compound by cleaving its β-O-4 bond. The transformation products were identified using LC-MS. The maximal lignin removal from corn stover was achieved by pretreatment using laccase in combination with the betaine-glycerol DES, which also resulted in a yield of fermentable sugar that was 130% higher than the control. This combination strategy provides guidance on the application of laccase and DESs in the pretreatment of lignocellulosic biomass.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03102-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient and eco-friendly removal of lignin is a critical challenge for bioethanol production from lignocellulosic biomass. Herein, we report the integration of laccase with deep eutectic solvents (DESs) for the pretreatment of corn stover to enhance the production of reducing sugars. Three betaine-based DESs were prepared and tested for their effects on the activity and stability of a bacterial laccase from Bacillus amyloliquefaciens LC02. The aqueous solution of DESs showed no adverse influence on laccase activity, and the laccase thermostability was improved in the presence of DESs. More than 95% of the laccase activity was retained in the DESs solution during the first hour of incubation at 70 °C. A red shift in the fluorescence spectra was observed for the laccase in the presence of DESs, indicating conformational changes. The laccase was able to degrade a dimeric lignin model compound by cleaving its β-O-4 bond. The transformation products were identified using LC-MS. The maximal lignin removal from corn stover was achieved by pretreatment using laccase in combination with the betaine-glycerol DES, which also resulted in a yield of fermentable sugar that was 130% higher than the control. This combination strategy provides guidance on the application of laccase and DESs in the pretreatment of lignocellulosic biomass.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深层共晶溶剂辅助漆酶预处理,改善玉米秸秆的酶水解。
高效、环保地去除木质素是利用木质纤维素生物质生产生物乙醇的关键挑战。在此,我们报告了将漆酶与深共晶溶剂(DES)结合用于玉米秸秆预处理以提高还原糖产量的方法。我们制备了三种甜菜碱基 DES,并测试了它们对来自淀粉芽孢杆菌 LC02 的细菌漆酶的活性和稳定性的影响。结果表明,DESs水溶液对漆酶活性没有不良影响,而且在DESs存在的情况下,漆酶的热稳定性得到了改善。在 70 °C 下培养的第一个小时内,DESs 溶液中保留了超过 95% 的漆酶活性。在有DESs存在的情况下,可以观察到漆酶的荧光光谱发生了红移,表明其构象发生了变化。漆酶能够通过裂解二聚木质素模型化合物的 β-O-4 键来降解该化合物。利用 LC-MS 对转化产物进行了鉴定。使用漆酶结合甜菜碱-甘油 DES 进行预处理,可以最大程度地去除玉米秸秆中的木质素,其可发酵糖的产量比对照组高出 130%。这种组合策略为漆酶和 DES 在木质纤维素生物质预处理中的应用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1