Ziyan Xu, Alexandra Kuhlmann-Hogan, Shihao Xu, Hubert Tseng, Dan Chen, Shirong Tan, Ming Sun, Victoria Tripple, Marcus Bosenberg, Kathryn Miller-Jensen, Susan M Kaech
{"title":"Scavenger Receptor CD36 in Tumor-Associated Macrophages Promotes Cancer Progression by Dampening Type I Interferon Signaling.","authors":"Ziyan Xu, Alexandra Kuhlmann-Hogan, Shihao Xu, Hubert Tseng, Dan Chen, Shirong Tan, Ming Sun, Victoria Tripple, Marcus Bosenberg, Kathryn Miller-Jensen, Susan M Kaech","doi":"10.1158/0008-5472.CAN-23-4027","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are a heterogenous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment (TME). In this study, we unveiled a mechanism by which scavenger receptor CD36 suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I interferon (IFN-I) production, mirroring the inverse correlation between CD36 and IFN-I response observed in cancer patients. IFN-I, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFN-I signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacological inhibition of CD36 to rejuvenate anti-tumor immunity.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-23-4027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-associated macrophages (TAMs) are a heterogenous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment (TME). In this study, we unveiled a mechanism by which scavenger receptor CD36 suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I interferon (IFN-I) production, mirroring the inverse correlation between CD36 and IFN-I response observed in cancer patients. IFN-I, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFN-I signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacological inhibition of CD36 to rejuvenate anti-tumor immunity.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.