CDH2 and CDH13 as potential prognostic and therapeutic targets for adrenocortical carcinoma.

IF 4.4 4区 医学 Q2 ONCOLOGY Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-11-15 DOI:10.1080/15384047.2024.2428469
Yongli Situ, Li Deng, Ziqing Huang, Xiaoli Jiang, Liubing Zhao, Juying Zhang, Lingling Lu, Quanyan Liang, Qinying Xu, Zheng Shao, Meng Liang
{"title":"<i>CDH2</i> and <i>CDH13</i> as potential prognostic and therapeutic targets for adrenocortical carcinoma.","authors":"Yongli Situ, Li Deng, Ziqing Huang, Xiaoli Jiang, Liubing Zhao, Juying Zhang, Lingling Lu, Quanyan Liang, Qinying Xu, Zheng Shao, Meng Liang","doi":"10.1080/15384047.2024.2428469","DOIUrl":null,"url":null,"abstract":"<p><p>Cadherin 2 (CDH2, N-cadherin) and cadherin 13 (CDH13, T-cadherin, H-cadherin) affect the progress and prognoses of many cancers. However, their roles in adrenocortical carcinoma (ACC), a rare endocrine cancer, remain unclear. To decipher the roles of these proteins in ACC and to identify their regulatory targets, we analyzed their expression levels, gene regulatory networks, prognostic value, and targets in ACC, using various bioinformatic analyses. <i>CDH2</i> was strongly downregulated and <i>CDH13</i> was strongly upregulated in patients with ACC; the expression levels of these genes affected the prognosis. In 75 patients, the expression of <i>CDH2</i> and <i>CDH13</i> was altered by 8% and 5%, respectively. <i>CDH2</i> and <i>CDH13</i>, as well as their neighboring genes, were predicted to form a complex network of interactions, mainly through coexpression and physical and genetic interactions. <i>CDH2</i> and its altered neighboring genes (ANGs) mainly affect tumor-related gene expression, cell cycle, and energy metabolism. The regulation of tumor-related integrin function, gene transcription, metabolism, and amide and phospholipid metabolism are the main functions of <i>CDH13</i> and its ANGs. MiRNA and kinase targets of <i>CDH2</i> and <i>CDH13</i> in ACC were identified. <i>CDH13</i> expression in patients with ACC was positively associated with immune cell infiltration. Anti-PD1/CTLA-4/PD-L1 immunotherapy significantly downregulated the expression of <i>CDH13</i> in patients with ACC. Foretinib and elesclomol were predicted to exert strong inhibitory effects on SW13 cells by inhibiting the expression of <i>CDH2</i> and <i>CDH13</i>. These data indicate that CDH2 and CDH13 are promising targets for precise treatment of ACC and may serve as new biomarkers for ACC prognosis.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2428469"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2428469","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cadherin 2 (CDH2, N-cadherin) and cadherin 13 (CDH13, T-cadherin, H-cadherin) affect the progress and prognoses of many cancers. However, their roles in adrenocortical carcinoma (ACC), a rare endocrine cancer, remain unclear. To decipher the roles of these proteins in ACC and to identify their regulatory targets, we analyzed their expression levels, gene regulatory networks, prognostic value, and targets in ACC, using various bioinformatic analyses. CDH2 was strongly downregulated and CDH13 was strongly upregulated in patients with ACC; the expression levels of these genes affected the prognosis. In 75 patients, the expression of CDH2 and CDH13 was altered by 8% and 5%, respectively. CDH2 and CDH13, as well as their neighboring genes, were predicted to form a complex network of interactions, mainly through coexpression and physical and genetic interactions. CDH2 and its altered neighboring genes (ANGs) mainly affect tumor-related gene expression, cell cycle, and energy metabolism. The regulation of tumor-related integrin function, gene transcription, metabolism, and amide and phospholipid metabolism are the main functions of CDH13 and its ANGs. MiRNA and kinase targets of CDH2 and CDH13 in ACC were identified. CDH13 expression in patients with ACC was positively associated with immune cell infiltration. Anti-PD1/CTLA-4/PD-L1 immunotherapy significantly downregulated the expression of CDH13 in patients with ACC. Foretinib and elesclomol were predicted to exert strong inhibitory effects on SW13 cells by inhibiting the expression of CDH2 and CDH13. These data indicate that CDH2 and CDH13 are promising targets for precise treatment of ACC and may serve as new biomarkers for ACC prognosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CDH2和CDH13是肾上腺皮质癌的潜在预后和治疗靶点。
粘连蛋白2(CDH2,N-cadherin)和粘连蛋白13(CDH13,T-cadherin,H-cadherin)会影响许多癌症的进展和预后。然而,它们在肾上腺皮质癌(ACC)这种罕见的内分泌癌中的作用仍不清楚。为了解读这些蛋白在 ACC 中的作用并确定它们的调控靶点,我们利用各种生物信息学分析方法分析了它们在 ACC 中的表达水平、基因调控网络、预后价值和靶点。在ACC患者中,CDH2强烈下调,CDH13强烈上调;这些基因的表达水平影响预后。在75名患者中,CDH2和CDH13的表达分别发生了8%和5%的改变。据预测,CDH2和CDH13及其邻近基因会形成一个复杂的相互作用网络,主要通过共表达以及物理和遗传相互作用。CDH2及其改变的邻近基因(ANGs)主要影响肿瘤相关基因的表达、细胞周期和能量代谢。CDH13 及其 ANGs 的主要功能是调控肿瘤相关整合素功能、基因转录、新陈代谢以及酰胺和磷脂代谢。研究发现了CDH2和CDH13在ACC中的MiRNA和激酶靶点。CDH13在ACC患者中的表达与免疫细胞浸润呈正相关。抗PD1/CTLA-4/PD-L1免疫疗法可显著下调CDH13在ACC患者中的表达。预测福瑞替尼和依来替诺可通过抑制CDH2和CDH13的表达对SW13细胞产生强烈的抑制作用。这些数据表明,CDH2和CDH13是有望用于ACC精准治疗的靶点,并可作为ACC预后的新生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1