{"title":"Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters in collective cell migration of epithelial cells.","authors":"Eriko Deguchi, Shuhao Lin, Daiki Hirayama, Kimiya Matsuda, Akira Tanave, Kenta Sumiyama, Shinya Tsukiji, Tetsuhisa Otani, Mikio Furuse, Alexander Sorkin, Michiyuki Matsuda, Kenta Terai","doi":"10.1016/j.celrep.2024.114986","DOIUrl":null,"url":null,"abstract":"<p><p>Canonical epidermal growth factor (EGF) receptor (EGFR) activation involves the binding of seven EGFR ligands (EGFRLs); however, their extracellular dynamics remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding, we show that epiregulin (EREG), a low-affinity EGFRL, rapidly and efficiently activates EGFR in Madin-Darby canine kidney (MDCK) epithelial cells and mouse epidermis. During collective cell migration, EGFR and extracellular signal-regulated kinase (ERK) activation waves propagate in an a disintegrin and metalloprotease 17 (ADAM17) sheddase- and EGFRL-dependent manner. Upon induced EGFRL shedding, low-affinity ligands EREG and amphiregulin (AREG) mediate faster and broader ERK waves than high-affinity ligands. Tight/adherens junction integrity is essential for ERK activation propagation, suggesting that tight intercellular spaces prefer the low-affinity EGFRLs for efficient signal transmission. In EREG-deficient mice, ERK wave propagation and cell migration were impaired during skin wound repair. We additionally show that heparin-binding EGF-like growth factor (HBEGF) primarily promotes surrounding cell motility. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114986","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Canonical epidermal growth factor (EGF) receptor (EGFR) activation involves the binding of seven EGFR ligands (EGFRLs); however, their extracellular dynamics remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding, we show that epiregulin (EREG), a low-affinity EGFRL, rapidly and efficiently activates EGFR in Madin-Darby canine kidney (MDCK) epithelial cells and mouse epidermis. During collective cell migration, EGFR and extracellular signal-regulated kinase (ERK) activation waves propagate in an a disintegrin and metalloprotease 17 (ADAM17) sheddase- and EGFRL-dependent manner. Upon induced EGFRL shedding, low-affinity ligands EREG and amphiregulin (AREG) mediate faster and broader ERK waves than high-affinity ligands. Tight/adherens junction integrity is essential for ERK activation propagation, suggesting that tight intercellular spaces prefer the low-affinity EGFRLs for efficient signal transmission. In EREG-deficient mice, ERK wave propagation and cell migration were impaired during skin wound repair. We additionally show that heparin-binding EGF-like growth factor (HBEGF) primarily promotes surrounding cell motility. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.