αKlotho modulates BNIP3-mediated mitophagy by regulating FoxO3 to decrease mitochondrial ROS and apoptosis in contrast-induced acute kidney injury.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2024-11-15 DOI:10.1007/s00018-024-05473-z
Xuying Zhu, Qisheng Lin, Yuanting Yang, Shu Li, Xinghua Shao, Weiming Zhang, Hong Cai, Jialin Li, Jingkui Wu, Kaiqi Zhang, Chaojun Qi, Minfang Zhang, Xiajing Che, Leyi Gu, Zhaohui Ni
{"title":"αKlotho modulates BNIP3-mediated mitophagy by regulating FoxO3 to decrease mitochondrial ROS and apoptosis in contrast-induced acute kidney injury.","authors":"Xuying Zhu, Qisheng Lin, Yuanting Yang, Shu Li, Xinghua Shao, Weiming Zhang, Hong Cai, Jialin Li, Jingkui Wu, Kaiqi Zhang, Chaojun Qi, Minfang Zhang, Xiajing Che, Leyi Gu, Zhaohui Ni","doi":"10.1007/s00018-024-05473-z","DOIUrl":null,"url":null,"abstract":"<p><p>Contrast-induced acute kidney injury (CI-AKI) is one of the main causes of hospital-acquired renal failure, and still lacks of effective treatments. Previously, we demonstrated that αKlotho, which is an anti-aging protein that highly expresses in the kidney, has therapeutic activity in CI-AKI through promoting autophagy. However, the specific mechanism underlying αKlotho-mediated autophagy remains unclear. The RNA sequencing analysis of renal cortex revealed that the differentially expressed genes related to autophagy between αKlotho-treated CI-AKI mice and vehicle-treated CI-AKI mice were found to be associated with mitophagy and apoptosis. In the kidney of CI-AKI mice and HK-2 cells exposed to Iohexol, we revealed that αKlotho promoted mitophagy and decreased cell apoptosis. Mechanistically, αKlotho attenuated mitochondria damage, decreased mitochondrial ROS by upregulating BNIP3-mediated mitophagy. BNIP3 deletion abolished the beneficial effects of αKlotho both in vivo and in vitro. Moreover, we further demonstrated that αKlotho upregulated FoxO3 nuclear expression in Iohexol-treated HK-2 cells. Knockdown of FOXO3 gene inhibited αKlotho-promoted BNIP3-mediated mitophagy and subsequently increased the oxidative injury and cell apoptosis. Taken together, our results indicated a critical role of αKlotho in alleviating CI-AKI via mitophagy promotion involving the FoxO3-BNIP3 pathway.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"454"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05473-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Contrast-induced acute kidney injury (CI-AKI) is one of the main causes of hospital-acquired renal failure, and still lacks of effective treatments. Previously, we demonstrated that αKlotho, which is an anti-aging protein that highly expresses in the kidney, has therapeutic activity in CI-AKI through promoting autophagy. However, the specific mechanism underlying αKlotho-mediated autophagy remains unclear. The RNA sequencing analysis of renal cortex revealed that the differentially expressed genes related to autophagy between αKlotho-treated CI-AKI mice and vehicle-treated CI-AKI mice were found to be associated with mitophagy and apoptosis. In the kidney of CI-AKI mice and HK-2 cells exposed to Iohexol, we revealed that αKlotho promoted mitophagy and decreased cell apoptosis. Mechanistically, αKlotho attenuated mitochondria damage, decreased mitochondrial ROS by upregulating BNIP3-mediated mitophagy. BNIP3 deletion abolished the beneficial effects of αKlotho both in vivo and in vitro. Moreover, we further demonstrated that αKlotho upregulated FoxO3 nuclear expression in Iohexol-treated HK-2 cells. Knockdown of FOXO3 gene inhibited αKlotho-promoted BNIP3-mediated mitophagy and subsequently increased the oxidative injury and cell apoptosis. Taken together, our results indicated a critical role of αKlotho in alleviating CI-AKI via mitophagy promotion involving the FoxO3-BNIP3 pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在对比剂诱导的急性肾损伤中,αKlotho通过调节FoxO3来减少线粒体ROS和细胞凋亡,从而调节BNIP3介导的有丝分裂。
对比剂诱导的急性肾损伤(CI-AKI)是医院获得性肾衰竭的主要原因之一,目前仍缺乏有效的治疗方法。此前,我们曾证实αKlotho是一种在肾脏中高表达的抗衰老蛋白,它通过促进自噬对CI-AKI具有治疗活性。然而,αKlotho介导自噬的具体机制仍不清楚。肾皮质的RNA测序分析显示,αKlotho治疗的CI-AKI小鼠与药物治疗的CI-AKI小鼠之间自噬相关基因的差异表达与有丝分裂和细胞凋亡有关。在暴露于 Iohexol 的 CI-AKI 小鼠肾脏和 HK-2 细胞中,我们发现 αKlotho 促进了有丝分裂,减少了细胞凋亡。从机理上讲,αKlotho通过上调BNIP3介导的有丝分裂来减轻线粒体损伤、减少线粒体ROS。在体内和体外,BNIP3 的缺失都会取消 αKlotho 的有益作用。此外,我们还进一步证实,αKlotho 能上调 Iohexol 处理的 HK-2 细胞中 FoxO3 的核表达。敲除 FOXO3 基因抑制了 αKlotho 促进的 BNIP3 介导的有丝分裂,从而增加了氧化损伤和细胞凋亡。综上所述,我们的研究结果表明,αKlotho通过FoxO3-BNIP3通路促进有丝分裂,在缓解CI-AKI中发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
MicroRNA-145-5p inhibits the tumorigenesis of breast cancer through SENP2-regulated ubiquitination of ERK2. GSDMD-dependent NET formation in hyperuricemic nephropathy. Lactate promotes H3K18 lactylation in human neuroectoderm differentiation. NFκB and JNK pathways mediate metabolic adaptation upon ESCRT-I deficiency. Regulation of yeast polarized exocytosis by phosphoinositide lipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1