Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent m6A regulation.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2025-01-23 DOI:10.1007/s00018-025-05588-x
Liqun Xu, Lijun Zhang, Quan Sun, Xiaoyan Zhang, Junfei Zhang, Xiran Zhao, Zebing Hu, Shu Zhang, Fei Shi
{"title":"Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent m<sup>6</sup>A regulation.","authors":"Liqun Xu, Lijun Zhang, Quan Sun, Xiaoyan Zhang, Junfei Zhang, Xiran Zhao, Zebing Hu, Shu Zhang, Fei Shi","doi":"10.1007/s00018-025-05588-x","DOIUrl":null,"url":null,"abstract":"<p><p>Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that m<sup>6</sup>A reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice. Supplementing IGF2BP1 could promote osteoblast proliferation and partially alleviate the adverse effects of mechanical unloading on bone formation. Mechanistically, IGF2BP1 inhibited the degradation of Lef1 mRNA by directly binding to its mRNA and recognizing the m<sup>6</sup>A modification. Furthermore, LEF1 promoted osteoblast proliferation by upregulating c-Myc and Cyclin D1 expression, as well as participated in mediating IGF2BP1-induced osteoblast activity under mechanical unloading. Notably, Melatonin (MT) might participate in the regulation of the IGF2BP1/LEF1 axis, thereby regulating the proliferation of osteoblasts and bone formation. Collectively, this study revealed a new insight into the regulation of the MT/IGF2BP1/LEF1 pathway in the process of unloading-induced bone loss, which could potentially contribute to establishing therapeutic strategies for disuse osteoporosis.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"60"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05588-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that m6A reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice. Supplementing IGF2BP1 could promote osteoblast proliferation and partially alleviate the adverse effects of mechanical unloading on bone formation. Mechanistically, IGF2BP1 inhibited the degradation of Lef1 mRNA by directly binding to its mRNA and recognizing the m6A modification. Furthermore, LEF1 promoted osteoblast proliferation by upregulating c-Myc and Cyclin D1 expression, as well as participated in mediating IGF2BP1-induced osteoblast activity under mechanical unloading. Notably, Melatonin (MT) might participate in the regulation of the IGF2BP1/LEF1 axis, thereby regulating the proliferation of osteoblasts and bone formation. Collectively, this study revealed a new insight into the regulation of the MT/IGF2BP1/LEF1 pathway in the process of unloading-induced bone loss, which could potentially contribute to establishing therapeutic strategies for disuse osteoporosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility. C1orf115 interacts with clathrin adaptors to undergo endocytosis and induces ABCA1 to promote enteric cholesterol efflux. Synergistic combination of orally available safe-in-man pleconaril, AG7404, and mindeudesivir inhibits enterovirus infections in human cell and organoid cultures. Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent m6A regulation. Activation and evasion of inflammasomes during viral and microbial infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1