Nadezhda N Sheveleva, Petr V Konarev, Konstantin M Boyko, Irina I Tarasenko, Mariya E Mikhailova, Valeriy V Bezrodnyi, Oleg V Shavykin, Igor M Neelov, Denis A Markelov
{"title":"SAXS, DLS, and MD studies of the Rg/Rh ratio for swollen and collapsed dendrimers.","authors":"Nadezhda N Sheveleva, Petr V Konarev, Konstantin M Boyko, Irina I Tarasenko, Mariya E Mikhailova, Valeriy V Bezrodnyi, Oleg V Shavykin, Igor M Neelov, Denis A Markelov","doi":"10.1063/5.0234864","DOIUrl":null,"url":null,"abstract":"<p><p>The radius of gyration, Rg, and the hydrodynamic radius, Rh, are the main experimental parameters that characterize the size of linear and branched macromolecules. In the case of dendrimers in solution, the ratio Rg/Rh, depending on the global conformation, varies from 1 (for a Gaussian soft sphere) to 3/5 (for a hard sphere). However, for high-generation dendrimers, this ratio may be less than the limiting value for a hard sphere. To understand the reasons of the low Rg/Rh value (<0.77), we have studied the second-generation peptide dendrimer containing pH-sensitive histidine amino acid residues (Lys-2His dendrimer) using small-angle x-ray (SAXS) and dynamic light scattering (DLS) experiments, as well as molecular dynamics simulations. The Lys-2His dendrimer takes a swollen conformation at pH = 2 and a collapsed 1 at pH = 7. Our results show that the Rg/Rh ratio for the considered dendrimer decreases from ≈3/5 at pH = 2 to 0.5 at pH = 7. We have found that the very low Rg/Rh value is due to (1) the formation of a dense impenetrable core (i.e., the transformation of the dendrimer from a Gaussian soft sphere into a sphere with a dense core) and (2) the presence of a larger number of solvent molecules in the dendrimer corona than in a typical macromolecule. In addition, in this work, we have directly confirmed in the experiments for the first time, the collapse of the Lys-2His dendrimer with increasing pH.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0234864","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The radius of gyration, Rg, and the hydrodynamic radius, Rh, are the main experimental parameters that characterize the size of linear and branched macromolecules. In the case of dendrimers in solution, the ratio Rg/Rh, depending on the global conformation, varies from 1 (for a Gaussian soft sphere) to 3/5 (for a hard sphere). However, for high-generation dendrimers, this ratio may be less than the limiting value for a hard sphere. To understand the reasons of the low Rg/Rh value (<0.77), we have studied the second-generation peptide dendrimer containing pH-sensitive histidine amino acid residues (Lys-2His dendrimer) using small-angle x-ray (SAXS) and dynamic light scattering (DLS) experiments, as well as molecular dynamics simulations. The Lys-2His dendrimer takes a swollen conformation at pH = 2 and a collapsed 1 at pH = 7. Our results show that the Rg/Rh ratio for the considered dendrimer decreases from ≈3/5 at pH = 2 to 0.5 at pH = 7. We have found that the very low Rg/Rh value is due to (1) the formation of a dense impenetrable core (i.e., the transformation of the dendrimer from a Gaussian soft sphere into a sphere with a dense core) and (2) the presence of a larger number of solvent molecules in the dendrimer corona than in a typical macromolecule. In addition, in this work, we have directly confirmed in the experiments for the first time, the collapse of the Lys-2His dendrimer with increasing pH.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.