iAmyP: A Multi-view Learning for Amyloidogenic Hexapeptides Identification Based on Sequence Least Squares Programming.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-11-15 DOI:10.1007/s12539-024-00666-3
Jinling Cai, Jianping Zhao, Yannan Bin, Junfeng Xia, Chunhou Zheng
{"title":"iAmyP: A Multi-view Learning for Amyloidogenic Hexapeptides Identification Based on Sequence Least Squares Programming.","authors":"Jinling Cai, Jianping Zhao, Yannan Bin, Junfeng Xia, Chunhou Zheng","doi":"10.1007/s12539-024-00666-3","DOIUrl":null,"url":null,"abstract":"<p><p>The development of peptide drug is hindered by the risk of amyloidogenic aggregation; if peptides tend to aggregate in this manner, they may be unsuitable for drug design. Computational methods aimed at predicting amyloidogenic sequences often face challenges in extracting high-quality features, and their predictive performance can be enchanced. To surmount these challenges, iAmyP was introduced as a specialized computational tool designed for predicting amyloidogenic hexapeptides. Utilizing multi-view learning, iAmyP incorporated sequence, structural, and evolutionary features, performing feature selection and feature fusion through recursive feature elimination and attention mechanisms. This amalgamation of features and subsequent feature selection and fusion lead to optimal performance facilitated by an optimization algorithm based on sequence least squares programming. Notably, iAmyP exhibited robust generalization for peptides with lengths of 7-10 amino acids. The role of hydrophobic amino acids in the aggregation process is critical, and a thorough analysis have significantly enhanced our insight into their significance in amyloidogenic hexapeptides. This tool represented an advancement in the development of peptide therapeutics by providing an understanding of amyloidogenic aggregation, establishing itself as a valuable framework for assessing amyloidogenic sequences. The data and code can be freely accessed at https://github.com/xialab-ahu/iAmyP .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00666-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of peptide drug is hindered by the risk of amyloidogenic aggregation; if peptides tend to aggregate in this manner, they may be unsuitable for drug design. Computational methods aimed at predicting amyloidogenic sequences often face challenges in extracting high-quality features, and their predictive performance can be enchanced. To surmount these challenges, iAmyP was introduced as a specialized computational tool designed for predicting amyloidogenic hexapeptides. Utilizing multi-view learning, iAmyP incorporated sequence, structural, and evolutionary features, performing feature selection and feature fusion through recursive feature elimination and attention mechanisms. This amalgamation of features and subsequent feature selection and fusion lead to optimal performance facilitated by an optimization algorithm based on sequence least squares programming. Notably, iAmyP exhibited robust generalization for peptides with lengths of 7-10 amino acids. The role of hydrophobic amino acids in the aggregation process is critical, and a thorough analysis have significantly enhanced our insight into their significance in amyloidogenic hexapeptides. This tool represented an advancement in the development of peptide therapeutics by providing an understanding of amyloidogenic aggregation, establishing itself as a valuable framework for assessing amyloidogenic sequences. The data and code can be freely accessed at https://github.com/xialab-ahu/iAmyP .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iAmyP:基于序列最小二乘法编程的淀粉样蛋白六肽识别多视角学习。
多肽药物的开发受到淀粉样蛋白聚集风险的阻碍;如果多肽倾向于以这种方式聚集,则可能不适合药物设计。旨在预测淀粉样蛋白生成序列的计算方法往往在提取高质量特征方面面临挑战,因此可以提高其预测性能。为了克服这些挑战,我们推出了 iAmyP,它是一种专门用于预测淀粉样蛋白生成六肽的计算工具。iAmyP 利用多视角学习,纳入了序列、结构和进化特征,通过递归特征消除和注意机制进行特征选择和特征融合。通过基于序列最小二乘法编程的优化算法,这种特征合并以及随后的特征选择和融合实现了最佳性能。值得注意的是,iAmyP 对长度为 7-10 个氨基酸的肽表现出强大的泛化能力。疏水氨基酸在聚合过程中的作用至关重要,对它们的深入分析大大提高了我们对它们在淀粉样蛋白六肽中的重要性的认识。该工具提供了对淀粉样蛋白致性聚集的理解,成为评估淀粉样蛋白致性序列的重要框架,从而推动了肽疗法的开发。数据和代码可在 https://github.com/xialab-ahu/iAmyP 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data. Unraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosis. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification. Viral Rebound After Antiviral Treatment: A Mathematical Modeling Study of the Role of Antiviral Mechanism of Action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1