Phytoremediation potential of potted plant species against vehicular emissions.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES International Journal of Phytoremediation Pub Date : 2024-11-15 DOI:10.1080/15226514.2024.2427387
Laraib Sana, Muhammad Farhan, Amina Kanwal, Maqsood Ahmad, Zahid Ali Butt, Abdul Wahid
{"title":"Phytoremediation potential of potted plant species against vehicular emissions.","authors":"Laraib Sana, Muhammad Farhan, Amina Kanwal, Maqsood Ahmad, Zahid Ali Butt, Abdul Wahid","doi":"10.1080/15226514.2024.2427387","DOIUrl":null,"url":null,"abstract":"<p><p>Urbanization and industrialization are exponentially deteriorating air quality, ecosystems, and human health. Phytoremediation is cost cost-effective, sustainable, and nature-based solution against air pollution. This study is designed to evaluate four species, <i>Chlorophytum comosum</i>, <i>Rhapis excels</i>a, <i>Spathiphyllum wallisii</i>, and <i>Ficus benjamina</i> for their phytoremediation potential. The experimental setup consisted of a sealed chamber to place potted plants and equipment, it was also connected to the vehicular exhaust pipe. The Air Pollution Tolerance Index was highest for <i>F. benjamina</i> (12.19) and lowest for <i>Rhapis excels</i> (8.58)<i>. C. comosum</i> has the highest VOC removal efficiency (90%, 0.172 ppm h<sup>-1</sup>). NO<sub>x</sub> remediation was highest by <i>F. benjamina</i> with 0.057 ppm h<sup>-1</sup> (77%) removal efficiency. SO<sub>x</sub> and CO were remediated more efficiently by <i>C. comosum,</i> as 89%, (0.18 ppm h<sup>-1</sup>) and 80% (0.23 ppm h<sup>-1</sup>), respectively. <i>R. excelsa</i> reduced a higher concentration of NH<sub>3</sub> (77%, 0.06 ppm h<sup>-1</sup>) compared to other species. <i>R. excelsa</i> and <i>S. wallisii</i> may serve as bio-indicator species. These findings provide a sustainable, natural, economical, and eco-friendly way to mitigate air pollution. <i>F. benjamina</i> and <i>C. comosum</i> are suitable species for urban landscapes, green spaces, urban plantations, and green walls to curb air pollutants due to traffic and industries.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2427387","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urbanization and industrialization are exponentially deteriorating air quality, ecosystems, and human health. Phytoremediation is cost cost-effective, sustainable, and nature-based solution against air pollution. This study is designed to evaluate four species, Chlorophytum comosum, Rhapis excelsa, Spathiphyllum wallisii, and Ficus benjamina for their phytoremediation potential. The experimental setup consisted of a sealed chamber to place potted plants and equipment, it was also connected to the vehicular exhaust pipe. The Air Pollution Tolerance Index was highest for F. benjamina (12.19) and lowest for Rhapis excels (8.58). C. comosum has the highest VOC removal efficiency (90%, 0.172 ppm h-1). NOx remediation was highest by F. benjamina with 0.057 ppm h-1 (77%) removal efficiency. SOx and CO were remediated more efficiently by C. comosum, as 89%, (0.18 ppm h-1) and 80% (0.23 ppm h-1), respectively. R. excelsa reduced a higher concentration of NH3 (77%, 0.06 ppm h-1) compared to other species. R. excelsa and S. wallisii may serve as bio-indicator species. These findings provide a sustainable, natural, economical, and eco-friendly way to mitigate air pollution. F. benjamina and C. comosum are suitable species for urban landscapes, green spaces, urban plantations, and green walls to curb air pollutants due to traffic and industries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盆栽植物物种对车辆排放物的植物修复潜力。
城市化和工业化使空气质量、生态系统和人类健康急剧恶化。植物修复是一种成本效益高、可持续和基于自然的空气污染解决方案。本研究旨在评估 Chlorophytum comosum、Rhapis excelsa、Spathiphyllum wallisii 和 Ficus benjamina 四种植物的植物修复潜力。实验装置包括一个放置盆栽植物和设备的密封舱,并与汽车排气管相连。空气污染耐受指数最高的是 F. benjamina(12.19),最低的是 Rhapis excels(8.58)。C. comosum 的挥发性有机化合物去除效率最高(90%,0.172 ppm h-1)。F. benjamina 的氮氧化物去除率最高,为 0.057 ppm h-1 (77%)。C. comosum 对 SOx 和 CO 的净化效率更高,分别为 89% (0.18 ppm h-1) 和 80% (0.23 ppm h-1)。与其他物种相比,R. excelsa 能减少更高浓度的 NH3(77%,0.06 ppm h-1)。R. excelsa 和 S. wallisii 可作为生物指示物种。这些发现为缓解空气污染提供了一种可持续、自然、经济和生态友好的方法。F. benjamina 和 C. comosum 是适用于城市景观、绿地、城市种植园和绿墙的物种,可以抑制交通和工业造成的空气污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
期刊最新文献
Phytoremediation potential of potted plant species against vehicular emissions. Screening of multi-metal tolerant plant growth promoting bacteria (PGPB) Stutzerimonas stutzeri WA4 and its assistance on phytoextraction of heavy metals (Cu, Ag and Pb). Bioenergy products sequestration proportions among three mixotrophically cultivated microalgae by remediating two organic waste resources. Effective adsorption of Cr(VI) from aqueous solution by Mg-Fe LDH supported on orange peel activated carbon: isotherm, kinetic, thermodynamics and mechanism studies. Sustainable Methylene Blue dye removal with activated carbon from Prosopis juliflora stem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1