Cryo-EM characterization of the anydromuropeptide permease AmpG central to bacterial fitness and β-lactam antibiotic resistance.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-16 DOI:10.1038/s41467-024-54219-9
Helena E Sverak, Luke N Yaeger, Liam J Worrall, Condurache M Vacariu, Amy J Glenwright, Marija Vuckovic, Zayni-Dean Al Azawi, Ryan P Lamers, Victoria A Marko, Clarissa Skorupski, Arvind S Soni, Martin E Tanner, Lori L Burrows, Natalie Cj Strynadka
{"title":"Cryo-EM characterization of the anydromuropeptide permease AmpG central to bacterial fitness and β-lactam antibiotic resistance.","authors":"Helena E Sverak, Luke N Yaeger, Liam J Worrall, Condurache M Vacariu, Amy J Glenwright, Marija Vuckovic, Zayni-Dean Al Azawi, Ryan P Lamers, Victoria A Marko, Clarissa Skorupski, Arvind S Soni, Martin E Tanner, Lori L Burrows, Natalie Cj Strynadka","doi":"10.1038/s41467-024-54219-9","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria invest significant resources into the continuous creation and tailoring of their essential protective peptidoglycan (PG) cell wall. Several soluble PG biosynthesis products in the periplasm are transported to the cytosol for recycling, leading to enhanced bacterial fitness. GlcNAc-1,6-anhydroMurNAc and peptide variants are transported by the essential major facilitator superfamily importer AmpG in Gram-negative pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Accumulation of GlcNAc-1,6-anhydroMurNAc-pentapeptides also results from β-lactam antibiotic induced cell wall damage. In some species, these products upregulate the β-lactamase AmpC, which hydrolyzes β-lactams to allow for bacterial survival and drug-resistant infections. Here, we have used cryo-electron microscopy and chemical synthesis of substrates in an integrated structural, biochemical, and cellular analysis of AmpG. We show how AmpG accommodates the large GlcNAc-1,6-anhydroMurNAc peptides, including a unique hydrophobic vestibule to the substrate binding cavity, and characterize residues involved in binding that inform the mechanism of proton-mediated transport.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54219-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria invest significant resources into the continuous creation and tailoring of their essential protective peptidoglycan (PG) cell wall. Several soluble PG biosynthesis products in the periplasm are transported to the cytosol for recycling, leading to enhanced bacterial fitness. GlcNAc-1,6-anhydroMurNAc and peptide variants are transported by the essential major facilitator superfamily importer AmpG in Gram-negative pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Accumulation of GlcNAc-1,6-anhydroMurNAc-pentapeptides also results from β-lactam antibiotic induced cell wall damage. In some species, these products upregulate the β-lactamase AmpC, which hydrolyzes β-lactams to allow for bacterial survival and drug-resistant infections. Here, we have used cryo-electron microscopy and chemical synthesis of substrates in an integrated structural, biochemical, and cellular analysis of AmpG. We show how AmpG accommodates the large GlcNAc-1,6-anhydroMurNAc peptides, including a unique hydrophobic vestibule to the substrate binding cavity, and characterize residues involved in binding that inform the mechanism of proton-mediated transport.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对细菌适应性和β-内酰胺类抗生素耐药性起核心作用的任督二肽渗透酶AmpG的低温电子显微特征。
细菌投入了大量资源来不断创造和调整其重要的保护性肽聚糖(PG)细胞壁。外质中的几种可溶性肽聚糖生物合成产物被运输到细胞质中进行再循环,从而提高了细菌的活力。在革兰氏阴性病原体(包括大肠埃希菌、肺炎克雷伯氏菌、鲍曼不动杆菌和铜绿假单胞菌)中,GlcNAc-1,6-anhydroMurNAc 和肽变体由重要的主要促进剂超家族输入器 AmpG 运输。GlcNAc-1,6-anhydroMurNAc-五肽的积累也是β-内酰胺类抗生素诱导细胞壁损伤的结果。在某些物种中,这些产物会上调 β-内酰胺酶 AmpC,后者会水解 β-内酰胺,使细菌得以存活并产生耐药性感染。在这里,我们利用冷冻电镜和底物的化学合成对 AmpG 进行了结构、生化和细胞综合分析。我们展示了 AmpG 如何容纳大型 GlcNAc-1,6-anhydroMurNAc肽,包括底物结合腔的独特疏水前庭,并描述了参与结合的残基的特征,为质子介导的转运机制提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Cryo-EM characterization of the anydromuropeptide permease AmpG central to bacterial fitness and β-lactam antibiotic resistance. Functionally overlapping intra- and extralysosomal pathways promote bis(monoacylglycero)phosphate synthesis in mammalian cells. Ultrafast bounce of particle-laden droplets Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus State capacity and varieties of climate policy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1