Yu Liu , Xiaohong Li , Ziwei Guo , Guangyan Li , Lu He , Huan Liu , Shuang Cai , Taoguang Huo
{"title":"Diammonium glycyrrhizinate alleviates iron overload-induced liver injury in mice via regulating the gut-liver axis","authors":"Yu Liu , Xiaohong Li , Ziwei Guo , Guangyan Li , Lu He , Huan Liu , Shuang Cai , Taoguang Huo","doi":"10.1016/j.phymed.2024.156216","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Evidence indicates a close association between iron overload (IO) and the pathogenesis of chronic liver diseases, highlighting the potential for interventions targeted at IO to impede or decelerate the progression of chronic liver diseases. Diammonium glycyrrhizinate (DG), the medicinal form of glycyrrhizic acid, a principal constituent of licorice, has been clinically employed as a hepatoprotective agent; however, its protective effect against IO-induced liver injury and underlying molecular mechanisms remain elusive.</div></div><div><h3>Purpose</h3><div>The aim of the present study is to investigate the hepatoprotective effect of DG against IO-induced liver injury with a focus on the gut-liver axis.</div></div><div><h3>Study design and methods</h3><div>Animal models of IO-induced liver injury and DG treatment have been established in <em>vivo</em>. Iron deposition, liver injury, intestinal barrier damage, and liver inflammation were assessed in mice treated with iron dextran or DG. The microbiome composition in feces was analyzed using 16S rRNA full-length sequencing. Bile acids (BAs) profiles in feces were detected by UPLC-Q-TOF-MS technique, and the expression levels of receptors, enzymes or transporters involved in BAs metabolism were also determined.</div></div><div><h3>Results</h3><div>DG partially reduced the iron deposition and the levels of ferrous ion in the livers of mice with IO, thereby mitigating oxidative damage. DG also improved gut microbiota dysbiosis, repaired intestinal barrier damage, inhibited endotoxin translocation to the liver, and subsequently suppressed TLR4/NF-κB/NLRP3 pathway-mediated liver inflammation caused by IO. Moreover, DG modulated BAs metabolism disorder in IO mice, reducing the accumulation of BAs in the liver.</div></div><div><h3>Conclusion</h3><div>DG alleviates IO-induced liver injury in mice by regulating the gut-liver axis. This study provides novel insights into the underlying mechanisms through which DG ameliorates liver injury caused by IO.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"135 ","pages":"Article 156216"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711324008742","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Evidence indicates a close association between iron overload (IO) and the pathogenesis of chronic liver diseases, highlighting the potential for interventions targeted at IO to impede or decelerate the progression of chronic liver diseases. Diammonium glycyrrhizinate (DG), the medicinal form of glycyrrhizic acid, a principal constituent of licorice, has been clinically employed as a hepatoprotective agent; however, its protective effect against IO-induced liver injury and underlying molecular mechanisms remain elusive.
Purpose
The aim of the present study is to investigate the hepatoprotective effect of DG against IO-induced liver injury with a focus on the gut-liver axis.
Study design and methods
Animal models of IO-induced liver injury and DG treatment have been established in vivo. Iron deposition, liver injury, intestinal barrier damage, and liver inflammation were assessed in mice treated with iron dextran or DG. The microbiome composition in feces was analyzed using 16S rRNA full-length sequencing. Bile acids (BAs) profiles in feces were detected by UPLC-Q-TOF-MS technique, and the expression levels of receptors, enzymes or transporters involved in BAs metabolism were also determined.
Results
DG partially reduced the iron deposition and the levels of ferrous ion in the livers of mice with IO, thereby mitigating oxidative damage. DG also improved gut microbiota dysbiosis, repaired intestinal barrier damage, inhibited endotoxin translocation to the liver, and subsequently suppressed TLR4/NF-κB/NLRP3 pathway-mediated liver inflammation caused by IO. Moreover, DG modulated BAs metabolism disorder in IO mice, reducing the accumulation of BAs in the liver.
Conclusion
DG alleviates IO-induced liver injury in mice by regulating the gut-liver axis. This study provides novel insights into the underlying mechanisms through which DG ameliorates liver injury caused by IO.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.