Berberine in combination with evodiamine ameliorates gastroesophageal reflux disease through TAS2R38/TRPV1-mediated regulation of MAPK/NF-κB signaling pathways and macrophage polarization.
Guoliang Cui, Manli Wang, Xiaofeng Li, Can Wang, Kinyu Shon, Zhiting Liu, Lang Ren, Xiaoxian Yang, Xiaoman Li, Yuanyuan Wu, Zhiguang Sun
{"title":"Berberine in combination with evodiamine ameliorates gastroesophageal reflux disease through TAS2R38/TRPV1-mediated regulation of MAPK/NF-κB signaling pathways and macrophage polarization.","authors":"Guoliang Cui, Manli Wang, Xiaofeng Li, Can Wang, Kinyu Shon, Zhiting Liu, Lang Ren, Xiaoxian Yang, Xiaoman Li, Yuanyuan Wu, Zhiguang Sun","doi":"10.1016/j.phymed.2024.156251","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastroesophageal reflux disease (GERD) is a chronic condition of the digestive tract with limited therapeutic options. Bitter taste receptors (TAS2Rs) and transient receptor potential vanilloid-1 (TRPV1) are implicated in modulating inflammatory responses. Berberine (BBR) and evodiamine (EVO) are known to activate TAS2Rs and TRPV1, respectively. However, whether BBR and EVO can ameliorate GERD by targeting TAS2Rs and TRPV1 remains uncertain.</p><p><strong>Purpose: </strong>This study aims to determine whether BBR and EVO mitigate esophageal injury by targeting TAS2R38 and TRPV1 and to elucidate their underlying molecular mechanisms.</p><p><strong>Methods: </strong>A GERD rat model was developed using esophagogastric anastomosis, while GERD in human esophageal epithelial cells (HEECs) was induced via bile acid (BA) exposure. Esophageal pathology was analyzed through hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). mRNA and protein levels were measured via qRT-PCR, immunofluorescence, immunohistochemistry and Western blot analysis. Small interfering RNA was used to silence TAS2R38 and TRPV1 in HEECs. The activation of TAS2R38 and TRPV1 by BBR and EVO was assessed through Ca<sup>2+</sup> mobilization assays. Finally, in vivo validation was conducted using U73122 to inhibit TAS2Rs and resiniferatoxin (RTX) to ablate TRPV1.</p><p><strong>Results: </strong>BBR and EVO treatments significantly improved esophageal pathology in GERD rats and reduced BA-induced inflammation in HEECs. Additionally, BBR and EVO suppressed proinflammatory factors expression, upregulated barrier proteins such as E-cadherin and claudin-1, and inhibited the phosphorylation of p65, JNK, and ERK in the MAPK/NF-κB signaling pathways in both in vivo and in vitro models. Furthermore, BBR and EVO, whether individually or in combination, reduced dilated intercellular spaces (DIS), increased desmosome numbers, and modulated macrophage polarization in GERD rats. Knockdown of TAS2R38 and TRPV1 in HEECs notably diminished the stimulatory effects of BBR and EVO. Moreover, the regulation of barrier function and MAPK/NF-κB pathway proteins by BBR and EVO in BA-induced HEECs was abrogated upon TAS2R38 and TRPV1 knockdown. Similarly, U73122 and RTX reversed the effects of BBR and EVO on macrophage polarization and MAPK/NF-κB signaling pathways in vivo.</p><p><strong>Conclusion: </strong>We firstly demonstrate that BBR and EVO alleviate GERD, with enhanced synergistic efficacy observed when used in combination. Mechanistically, BBR and EVO activate the TAS2R38 and TRPV1, respectively, leading to downregulation of phosphorylation in MAPK/NF-κB signaling pathways and modulation of macrophage polarization. These findings offer a novel foundation for the clinical application of BBR and EVO in GERD treatment.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"135 ","pages":"156251"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156251","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gastroesophageal reflux disease (GERD) is a chronic condition of the digestive tract with limited therapeutic options. Bitter taste receptors (TAS2Rs) and transient receptor potential vanilloid-1 (TRPV1) are implicated in modulating inflammatory responses. Berberine (BBR) and evodiamine (EVO) are known to activate TAS2Rs and TRPV1, respectively. However, whether BBR and EVO can ameliorate GERD by targeting TAS2Rs and TRPV1 remains uncertain.
Purpose: This study aims to determine whether BBR and EVO mitigate esophageal injury by targeting TAS2R38 and TRPV1 and to elucidate their underlying molecular mechanisms.
Methods: A GERD rat model was developed using esophagogastric anastomosis, while GERD in human esophageal epithelial cells (HEECs) was induced via bile acid (BA) exposure. Esophageal pathology was analyzed through hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). mRNA and protein levels were measured via qRT-PCR, immunofluorescence, immunohistochemistry and Western blot analysis. Small interfering RNA was used to silence TAS2R38 and TRPV1 in HEECs. The activation of TAS2R38 and TRPV1 by BBR and EVO was assessed through Ca2+ mobilization assays. Finally, in vivo validation was conducted using U73122 to inhibit TAS2Rs and resiniferatoxin (RTX) to ablate TRPV1.
Results: BBR and EVO treatments significantly improved esophageal pathology in GERD rats and reduced BA-induced inflammation in HEECs. Additionally, BBR and EVO suppressed proinflammatory factors expression, upregulated barrier proteins such as E-cadherin and claudin-1, and inhibited the phosphorylation of p65, JNK, and ERK in the MAPK/NF-κB signaling pathways in both in vivo and in vitro models. Furthermore, BBR and EVO, whether individually or in combination, reduced dilated intercellular spaces (DIS), increased desmosome numbers, and modulated macrophage polarization in GERD rats. Knockdown of TAS2R38 and TRPV1 in HEECs notably diminished the stimulatory effects of BBR and EVO. Moreover, the regulation of barrier function and MAPK/NF-κB pathway proteins by BBR and EVO in BA-induced HEECs was abrogated upon TAS2R38 and TRPV1 knockdown. Similarly, U73122 and RTX reversed the effects of BBR and EVO on macrophage polarization and MAPK/NF-κB signaling pathways in vivo.
Conclusion: We firstly demonstrate that BBR and EVO alleviate GERD, with enhanced synergistic efficacy observed when used in combination. Mechanistically, BBR and EVO activate the TAS2R38 and TRPV1, respectively, leading to downregulation of phosphorylation in MAPK/NF-κB signaling pathways and modulation of macrophage polarization. These findings offer a novel foundation for the clinical application of BBR and EVO in GERD treatment.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.