{"title":"A protein fitness predictive framework based on feature combination and intelligent searching.","authors":"Zhihui Zhang, Zhixuan Li, Qianyue Wang, Hanlin Wu, Manli Yang, Fengguang Zhao, Mingkui Tan, Shuangyan Han","doi":"10.1002/pro.5211","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) constructs predictive models by understanding the relationship between protein sequences and their functions, enabling efficient identification of protein sequences with high fitness values without falling into local optima, like directional evolution. However, how to extract the most pertinent functional feature information from a limited number of protein sequences is vital for optimizing the performance of ML models. Here, we propose scut_ProFP (Protein Fitness Predictor), a predictive framework that integrates feature combination and feature selection techniques. Feature combination offers comprehensive sequence information, while feature selection searches for the most beneficial features to enhance model performance, enabling accurate sequence-to-function mapping. Compared to similar frameworks, scut_ProFP demonstrates superior performance and is also competitive with more complex deep learning models-ECNet, EVmutation, and UniRep. In addition, scut_ProFP enables generalization from low-order mutants to high-order mutants. Finally, we utilized scut_ProFP to simulate the engineering of the fluorescent protein CreiLOV and highly enriched mutants with high fluorescence based on only a small number of low-fluorescence mutants. Essentially, the developed method is advantageous for ML in protein engineering, providing an effective approach to data-driven protein engineering. The code and datasets for scut_ProFP are available at https://github.com/Zhang66-star/scut_ProFP.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 12","pages":"e5211"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) constructs predictive models by understanding the relationship between protein sequences and their functions, enabling efficient identification of protein sequences with high fitness values without falling into local optima, like directional evolution. However, how to extract the most pertinent functional feature information from a limited number of protein sequences is vital for optimizing the performance of ML models. Here, we propose scut_ProFP (Protein Fitness Predictor), a predictive framework that integrates feature combination and feature selection techniques. Feature combination offers comprehensive sequence information, while feature selection searches for the most beneficial features to enhance model performance, enabling accurate sequence-to-function mapping. Compared to similar frameworks, scut_ProFP demonstrates superior performance and is also competitive with more complex deep learning models-ECNet, EVmutation, and UniRep. In addition, scut_ProFP enables generalization from low-order mutants to high-order mutants. Finally, we utilized scut_ProFP to simulate the engineering of the fluorescent protein CreiLOV and highly enriched mutants with high fluorescence based on only a small number of low-fluorescence mutants. Essentially, the developed method is advantageous for ML in protein engineering, providing an effective approach to data-driven protein engineering. The code and datasets for scut_ProFP are available at https://github.com/Zhang66-star/scut_ProFP.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).