Yunlei Zhang, Carmine Putignano, Changmin Qi, Weiyi Zhao, Bo Yu, Shuanhong Ma, Daniele Dini and Feng Zhou*,
{"title":"Sliding-Induced Rehydration in Hydrogels for Restoring Lubrication and Anticreeping Capability","authors":"Yunlei Zhang, Carmine Putignano, Changmin Qi, Weiyi Zhao, Bo Yu, Shuanhong Ma, Daniele Dini and Feng Zhou*, ","doi":"10.1021/acs.jpclett.4c0238310.1021/acs.jpclett.4c02383","DOIUrl":null,"url":null,"abstract":"<p >Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures. Crucially, a certain velocity in the mixed lubrication regime can produce a hydrodynamic pressure peak at the wedge and drive the rehydration inflow to overcome the extrusion. At lower sliding velocities in the boundary lubrication regime, inflows are insufficient to counteract fluid exudation, whereas at higher velocities in the hydrodynamic lubrication regime, the inlet wedge effect would diminish. These results suggest that tribological rehydration offers a novel approach to enhancing load-bearing capacity and maintaining lubrication in the hydrogels.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11328–11334 11328–11334"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02383","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures. Crucially, a certain velocity in the mixed lubrication regime can produce a hydrodynamic pressure peak at the wedge and drive the rehydration inflow to overcome the extrusion. At lower sliding velocities in the boundary lubrication regime, inflows are insufficient to counteract fluid exudation, whereas at higher velocities in the hydrodynamic lubrication regime, the inlet wedge effect would diminish. These results suggest that tribological rehydration offers a novel approach to enhancing load-bearing capacity and maintaining lubrication in the hydrogels.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.