Lei Xu, Chengjie Zhang, Rujia Hou, Yuhong Gao, Zhaoyu Zhang, Zewei Yi, Chi Zhang, Wei Xu
{"title":"Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate","authors":"Lei Xu, Chengjie Zhang, Rujia Hou, Yuhong Gao, Zhaoyu Zhang, Zewei Yi, Chi Zhang, Wei Xu","doi":"10.1021/acs.jpclett.4c03040","DOIUrl":null,"url":null,"abstract":"On-surface synthesis has shown great promise in the precise bottom-up preparation of molecular nanostructures. Apart from the direct C–C coupling reaction pathway, an alternative strategy is to exploit the metal–organic interactions provided by integrated metals for preassembly, which exhibit high reversibility and can anchor specific conformations of molecular precursors, thus allowing the precise construction of nanostructures with improved reaction selectivity. Previous studies have mainly been devoted to the construction of target reaction products through the incorporation of metal atoms, ranging from intrinsic to extrinsic atoms on metal substrates and, more recently, to their cooperative effects. However, the formation of different covalent nanostructures by competitive interactions between intrinsic and extrinsic adatoms remains elusive. Herein, we controlled the selectivity of covalent reaction products from isomerically specific <i>trans</i>-chains to <i>cis</i>-rings, resulting from the transmetalation of intrinsic Ag adatoms to extrinsic Na atoms on a Ag(111) substrate. Our results exhibit the competitive interactions between intrinsic and extrinsic metal atoms in real space and demonstrate their influence on the selectivity of reaction products, which should broaden the regulatory strategies for on-surface synthesis that shed light on the controllable and selective synthesis of target covalent nanostructures.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03040","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
On-surface synthesis has shown great promise in the precise bottom-up preparation of molecular nanostructures. Apart from the direct C–C coupling reaction pathway, an alternative strategy is to exploit the metal–organic interactions provided by integrated metals for preassembly, which exhibit high reversibility and can anchor specific conformations of molecular precursors, thus allowing the precise construction of nanostructures with improved reaction selectivity. Previous studies have mainly been devoted to the construction of target reaction products through the incorporation of metal atoms, ranging from intrinsic to extrinsic atoms on metal substrates and, more recently, to their cooperative effects. However, the formation of different covalent nanostructures by competitive interactions between intrinsic and extrinsic adatoms remains elusive. Herein, we controlled the selectivity of covalent reaction products from isomerically specific trans-chains to cis-rings, resulting from the transmetalation of intrinsic Ag adatoms to extrinsic Na atoms on a Ag(111) substrate. Our results exhibit the competitive interactions between intrinsic and extrinsic metal atoms in real space and demonstrate their influence on the selectivity of reaction products, which should broaden the regulatory strategies for on-surface synthesis that shed light on the controllable and selective synthesis of target covalent nanostructures.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.