Hybrid Hamiltonian Simulation for Excitation Dynamics

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-11-01 DOI:10.1021/acs.jpclett.4c0262410.1021/acs.jpclett.4c02624
Lingyun Wan, Jie Liu*, Zhenyu Li and Jinlong Yang*, 
{"title":"Hybrid Hamiltonian Simulation for Excitation Dynamics","authors":"Lingyun Wan,&nbsp;Jie Liu*,&nbsp;Zhenyu Li and Jinlong Yang*,&nbsp;","doi":"10.1021/acs.jpclett.4c0262410.1021/acs.jpclett.4c02624","DOIUrl":null,"url":null,"abstract":"<p >Hamiltonian simulation is one of the most anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation is commonly time dependent using Trotter-Suzuki product formulas so that long time quantum dynamic simulations (QDSs) become impratical for near-term quantum processors. Hamiltonian simulation based on Cartan decomposition (CD) provides an appealing scheme for QDSs with fixed-depth circuits, while it is limited to a time-independent Hamiltonian. In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational quantum algorithms. The time-dependent and time-independent parts of the Hamiltonian are treated by using variational and CD-based Hamiltonian simulation algorithms, respectively. As such, this hybrid Hamiltonian simulation requires only fixed-depth quantum circuits to handle time-dependent cases while maintaining a high accuracy. We apply this new algorithm to study the response of spin and molecular systems to δ-kick electric fields and obtain accurate spectra for these excitation processes.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11234–11243 11234–11243"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02624","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hamiltonian simulation is one of the most anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation is commonly time dependent using Trotter-Suzuki product formulas so that long time quantum dynamic simulations (QDSs) become impratical for near-term quantum processors. Hamiltonian simulation based on Cartan decomposition (CD) provides an appealing scheme for QDSs with fixed-depth circuits, while it is limited to a time-independent Hamiltonian. In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational quantum algorithms. The time-dependent and time-independent parts of the Hamiltonian are treated by using variational and CD-based Hamiltonian simulation algorithms, respectively. As such, this hybrid Hamiltonian simulation requires only fixed-depth quantum circuits to handle time-dependent cases while maintaining a high accuracy. We apply this new algorithm to study the response of spin and molecular systems to δ-kick electric fields and obtain accurate spectra for these excitation processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激发动力学的混合哈密顿模拟
哈密顿模拟是量子计算最令人期待的应用之一。使用 Trotter-Suzuki 乘积公式实现哈密顿模拟的量子电路深度通常与时间有关,因此对于近期量子处理器来说,长时间量子动态模拟(QDS)变得难以实现。基于卡坦分解(CD)的哈密顿模拟为具有固定深度电路的 QDS 提供了一种有吸引力的方案,但它仅限于与时间无关的哈密顿。在这项工作中,我们将这种基于卡坦分解的哈密顿模拟算法与变分量子算法相结合,使其适用于研究随时间变化的系统。哈密顿的时间依赖部分和时间不依赖部分分别使用变分法和基于 CD 的哈密顿模拟算法进行处理。因此,这种混合哈密顿模拟只需要固定深度的量子电路,就能在保持高精度的同时处理与时间相关的情况。我们应用这种新算法研究了自旋和分子系统对δ-踢电场的响应,并获得了这些激发过程的精确光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Different Photodissociation Mechanisms in Fe(CO)5 and Cr(CO)6 Evidenced with Femtosecond Valence Photoelectron Spectroscopy and Excited-State Molecular Dynamics Simulations Protonation Weakens the Influence of Ribose on Triplet Decay of 2-Thiocytidine Ion Diffusion Reveals Heterogeneous Viscosity in Nanostructured Ionic Liquids Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate Upconversion on the Micrometer Scale: Impact of Local Heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1