Neural Thermodynamic Integration: Free Energies from Energy-Based Diffusion Models

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-11-06 DOI:10.1021/acs.jpclett.4c0195810.1021/acs.jpclett.4c01958
Bálint Máté*, François Fleuret* and Tristan Bereau*, 
{"title":"Neural Thermodynamic Integration: Free Energies from Energy-Based Diffusion Models","authors":"Bálint Máté*,&nbsp;François Fleuret* and Tristan Bereau*,&nbsp;","doi":"10.1021/acs.jpclett.4c0195810.1021/acs.jpclett.4c01958","DOIUrl":null,"url":null,"abstract":"<p >Thermodynamic integration (TI) offers a rigorous method for estimating free-energy differences by integrating over a sequence of interpolating conformational ensembles. However, TI calculations are computationally expensive and typically limited to coupling a small number of degrees of freedom due to the need to sample numerous intermediate ensembles with sufficient conformational-space overlap. In this work, we propose to perform TI along an alchemical pathway represented by a trainable neural network, which we term Neural TI. Critically, we parametrize a time-dependent Hamiltonian interpolating between the interacting and noninteracting systems and optimize its gradient using a score matching objective. The ability of the resulting energy-based diffusion model to sample all intermediate ensembles allows us to perform TI from a single reference calculation. We apply our method to Lennard-Jones fluids, where we report accurate calculations of the excess chemical potential, demonstrating that Neural TI reproduces the underlying changes in free energy without the need for simulations at interpolating Hamiltonians.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11395–11404 11395–11404"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01958","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermodynamic integration (TI) offers a rigorous method for estimating free-energy differences by integrating over a sequence of interpolating conformational ensembles. However, TI calculations are computationally expensive and typically limited to coupling a small number of degrees of freedom due to the need to sample numerous intermediate ensembles with sufficient conformational-space overlap. In this work, we propose to perform TI along an alchemical pathway represented by a trainable neural network, which we term Neural TI. Critically, we parametrize a time-dependent Hamiltonian interpolating between the interacting and noninteracting systems and optimize its gradient using a score matching objective. The ability of the resulting energy-based diffusion model to sample all intermediate ensembles allows us to perform TI from a single reference calculation. We apply our method to Lennard-Jones fluids, where we report accurate calculations of the excess chemical potential, demonstrating that Neural TI reproduces the underlying changes in free energy without the need for simulations at interpolating Hamiltonians.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经热力学集成:基于能量的扩散模型的自由能
热力学积分(TI)提供了一种严格的方法,通过对一连串内插构象集合进行积分来估算自由能差。然而,TI 计算的计算成本很高,而且由于需要采样大量具有足够构象空间重叠的中间组合,通常仅限于耦合少量自由度。在这项工作中,我们建议沿着可训练神经网络代表的炼金术途径执行 TI,我们称之为神经 TI。重要的是,我们在相互作用和非相互作用系统之间设置了一个随时间变化的哈密顿参数,并使用分数匹配目标优化其梯度。由此产生的基于能量的扩散模型能够对所有中间集合进行采样,这使我们能够从单一参考计算中执行 TI。我们将这一方法应用于伦纳德-琼斯流体,报告了过剩化学势的精确计算结果,证明了神经 TI 重现了自由能的基本变化,而无需对插值哈密顿进行模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Different Photodissociation Mechanisms in Fe(CO)5 and Cr(CO)6 Evidenced with Femtosecond Valence Photoelectron Spectroscopy and Excited-State Molecular Dynamics Simulations Protonation Weakens the Influence of Ribose on Triplet Decay of 2-Thiocytidine Ion Diffusion Reveals Heterogeneous Viscosity in Nanostructured Ionic Liquids Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate Upconversion on the Micrometer Scale: Impact of Local Heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1