Tree-Based Pipeline Optimization-Based Automated-Machine Learning Model for Performance Prediction of Materials and Structures: Case Studies and UI Design
{"title":"Tree-Based Pipeline Optimization-Based Automated-Machine Learning Model for Performance Prediction of Materials and Structures: Case Studies and UI Design","authors":"Shixue Liang, Zhengyu Fei, Junning Wu, Xing Lin","doi":"10.1155/2024/1485739","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Machine learning (ML) methods have become increasingly prominent for predicting material and structural performance in civil engineering. However, these methods often require repetitive iterations and optimizations by professionals to obtain an optimal model, which are time-consuming and challenging for nonexpert users. In this paper, we propose an automated ML (Auto-ML) model using the tree-based pipeline optimization tool (TPOT) to address these limitations and streamline the performance prediction process. TPOT leverages genetic programming to optimize various ML models, including DT, RF, GBDT, LightGBM, and XGBoost, and to search possible models that fits a particular dataset, which cuts the most tedious parts of ML. To demonstrate the effectiveness of TPOT-based Auto-ML, two case studies are presented by using TPOT-based Auto-ML algorithms to construct prediction models for compressive strength of recycled micropowder mortar, and punching shear bearing capacity/failure mode of RC slab-column joints. To explain the “black box” of Auto-ML, Shapley Additive Explanation (SHAP) is introduced to interpret the best predictive models and rank the importance of influencing factors, providing a basis for material and structural design. Finally, a user interface (UI) for engineering applications is developed which enables end-to-end automation from data preprocessing to predictive results presentation.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1485739","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1485739","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) methods have become increasingly prominent for predicting material and structural performance in civil engineering. However, these methods often require repetitive iterations and optimizations by professionals to obtain an optimal model, which are time-consuming and challenging for nonexpert users. In this paper, we propose an automated ML (Auto-ML) model using the tree-based pipeline optimization tool (TPOT) to address these limitations and streamline the performance prediction process. TPOT leverages genetic programming to optimize various ML models, including DT, RF, GBDT, LightGBM, and XGBoost, and to search possible models that fits a particular dataset, which cuts the most tedious parts of ML. To demonstrate the effectiveness of TPOT-based Auto-ML, two case studies are presented by using TPOT-based Auto-ML algorithms to construct prediction models for compressive strength of recycled micropowder mortar, and punching shear bearing capacity/failure mode of RC slab-column joints. To explain the “black box” of Auto-ML, Shapley Additive Explanation (SHAP) is introduced to interpret the best predictive models and rank the importance of influencing factors, providing a basis for material and structural design. Finally, a user interface (UI) for engineering applications is developed which enables end-to-end automation from data preprocessing to predictive results presentation.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.