Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights

Energy Storage Pub Date : 2024-11-10 DOI:10.1002/est2.70093
Smruti Ranjan Parida, Rakesh Kumar Sahoo, Ankita Jaiswal, Paramjit Kour, Brahmananda Chakraborty, Sridhar Sahu
{"title":"Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights","authors":"Smruti Ranjan Parida,&nbsp;Rakesh Kumar Sahoo,&nbsp;Ankita Jaiswal,&nbsp;Paramjit Kour,&nbsp;Brahmananda Chakraborty,&nbsp;Sridhar Sahu","doi":"10.1002/est2.70093","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study discusses the hydrogen storage and delivery capacity of Sc-decorated [6]cycloparaphenylene ([6]CPP) using dispersion-corrected density functional theory calculations (DFT + D3). The scandium atoms are decorated over [6]CPP via Dewar coordination with an average binding energy of 1.33 eV. Each Sc atom stores up to 5H<sub>2</sub> molecules in quasi-molecular form at an average adsorption energy ranging from 0.23 to 0.36 eV/H<sub>2</sub>. The system's stability before and after H<sub>2</sub> adsorption is checked using reactivity parameters. The maximum hydrogen gravimetric capacity of the system is found to be 7.68 wt% at low temperatures at 1–60 bar pressure. With an increase in temperature (300–420 K), the gravimetric density is more than 5.5 wt% (US-DOE target) below 60 bar. Atom-Centered Density Matrix Propagation (ADMP)-molecular dynamics (MD) simulations reveal that the desorption of H<sub>2</sub> molecules from [6]CPP starts at around 300 K/1 bar, and complete desorption occurs above 480 K. The minimum Van't Hoff desorption temperature for [6]CPP-Sc is 296.9 K at 1 atm pressure. Insignificant change in the structure of [6]CPP-Sc during adsorption and desorption processes promises stability and reversibility of the system. Hence, we believe that Sc-decorated [6]CPP can be a promising candidate for hydrogen storage applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study discusses the hydrogen storage and delivery capacity of Sc-decorated [6]cycloparaphenylene ([6]CPP) using dispersion-corrected density functional theory calculations (DFT + D3). The scandium atoms are decorated over [6]CPP via Dewar coordination with an average binding energy of 1.33 eV. Each Sc atom stores up to 5H2 molecules in quasi-molecular form at an average adsorption energy ranging from 0.23 to 0.36 eV/H2. The system's stability before and after H2 adsorption is checked using reactivity parameters. The maximum hydrogen gravimetric capacity of the system is found to be 7.68 wt% at low temperatures at 1–60 bar pressure. With an increase in temperature (300–420 K), the gravimetric density is more than 5.5 wt% (US-DOE target) below 60 bar. Atom-Centered Density Matrix Propagation (ADMP)-molecular dynamics (MD) simulations reveal that the desorption of H2 molecules from [6]CPP starts at around 300 K/1 bar, and complete desorption occurs above 480 K. The minimum Van't Hoff desorption temperature for [6]CPP-Sc is 296.9 K at 1 atm pressure. Insignificant change in the structure of [6]CPP-Sc during adsorption and desorption processes promises stability and reversibility of the system. Hence, we believe that Sc-decorated [6]CPP can be a promising candidate for hydrogen storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钪蜕变的 [6]Cycloparaphenylene 中的室温可逆氢存储:计算见解
本研究利用色散校正密度泛函理论计算(DFT + D3)讨论了钪装饰[6]环联苯([6]CPP)的储氢和输氢能力。钪原子通过杜瓦配位装饰在 [6]CPP 上,平均结合能为 1.33 eV。每个钪原子以准分子形式储存多达 5 个 H2 分子,平均吸附能在 0.23 至 0.36 eV/H2 之间。利用反应性参数检测了系统在吸附 H2 前后的稳定性。结果发现,在低温、1-60 巴压力下,该系统的最大氢重力容量为 7.68 wt%。随着温度的升高(300-420 K),在低于 60 bar 的压力下,氢的重量密度超过 5.5 wt%(US-DOE 目标)。原子中心密度矩阵传播(ADMP)-分子动力学(MD)模拟显示,[6]CPP 中的 H2 分子在 300 K/1 bar 左右开始解吸,在 480 K 以上完全解吸。在吸附和解吸过程中,[6]CPP-Sc 的结构变化不大,这表明该体系具有稳定性和可逆性。因此,我们认为掺杂了鳞片的 [6]CPP 有希望成为储氢应用的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle Sustainable Hydrogen Storage and Methanol Synthesis Through Solar-Powered Co-Electrolysis Using SOEC Strategic Patent Portfolio Management in the Sodium-Ion Battery Industry: Navigating Innovation and Competition Optimizing Wind and Solar Integration in a Hybrid Energy System for Enhanced Sustainability Exploration of Hydrogen Storage Exhibited by Rh-Decorated Pristine and Defective Graphenes: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1