Mingyang Song, Jianjun Wang, Rui Li, Washington Y. Ochieng
{"title":"Estimation of Road Service Quality Using the Two-Fluid Model Considering the Resilience of Traffic Flow","authors":"Mingyang Song, Jianjun Wang, Rui Li, Washington Y. Ochieng","doi":"10.1155/2024/6821286","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In an urban road network, the ability of the traffic flow itself to alleviate congestion caused by external disruptions is overlooked. This study applied the two-fluid model to simulate mesoscopic traffic flow, focusing on the resilience of urban road networks under normal disturbances. Three resilience indices—plasticity, transition of elasticity, and elasticity—were introduced based on the failure deformation process of rigid materials. These indices were used to modify the two-fluid model’s parameters, considering the effects of bus operations and temporary roadblocks on traffic flow and service quality. A hidden Markov model (HMM) was employed to predict service quality transitions (distinction, merit, and pass), with validation using dynamic bayonet traffic data from Xuancheng and video recordings from Xi’an, China. The results confirmed that resilience varies significantly across different times and locations, with peak hours and dense urban areas exhibiting lower resilience and higher susceptibility to disruptions. Bus queuing was found to degrade service quality, and rainstorms had a more severe impact than construction zones. The study can aid in the development of management efficiency of urban road networks.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6821286","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6821286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In an urban road network, the ability of the traffic flow itself to alleviate congestion caused by external disruptions is overlooked. This study applied the two-fluid model to simulate mesoscopic traffic flow, focusing on the resilience of urban road networks under normal disturbances. Three resilience indices—plasticity, transition of elasticity, and elasticity—were introduced based on the failure deformation process of rigid materials. These indices were used to modify the two-fluid model’s parameters, considering the effects of bus operations and temporary roadblocks on traffic flow and service quality. A hidden Markov model (HMM) was employed to predict service quality transitions (distinction, merit, and pass), with validation using dynamic bayonet traffic data from Xuancheng and video recordings from Xi’an, China. The results confirmed that resilience varies significantly across different times and locations, with peak hours and dense urban areas exhibiting lower resilience and higher susceptibility to disruptions. Bus queuing was found to degrade service quality, and rainstorms had a more severe impact than construction zones. The study can aid in the development of management efficiency of urban road networks.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.