Precision, quantitative measurement of sunflower capitulum inclination: A trigonometry-based approach

IF 2 3区 农林科学 Q2 AGRONOMY Agronomy Journal Pub Date : 2024-10-12 DOI:10.1002/agj2.21708
Emily M. DeValk, Brady D. Koehler, Brent S. Hulke
{"title":"Precision, quantitative measurement of sunflower capitulum inclination: A trigonometry-based approach","authors":"Emily M. DeValk,&nbsp;Brady D. Koehler,&nbsp;Brent S. Hulke","doi":"10.1002/agj2.21708","DOIUrl":null,"url":null,"abstract":"<p>Sunflower (<i>Helianthus annuus</i>) is a widely cultivated crop that exhibits a trait known as capitulum (or head) inclination at maturity. This trait is influenced by various structural factors, including head weight, stem traits, and plant height. A sunflower head should be at an angle at which the head faces the ground to avoid damage from the sun and birds. While this desired inclination range is known, current methods, including visual estimation and a model of measuring inclined length of the stem, fail to provide precise measurements of angle. This study introduces novel approaches to mathematically measure the head inclination angle. The research, which was conducted over the 2022 and 2023 growing seasons, involved an aluminum rod equipped with a ruler and a digital protractor to measure various height and angle components. Using the data collected, three methods were applied for measuring inclination: a previously published model as a control, a trigonometry-based approach using angle and height measurements, and other model-based approaches. A linear model resulted in a formula to calculate the head angle of any plant based solely on two height measurements, the highest point of the plant at both bloom (R5) and maturity (R9). Calculations of heritability and correlation suggest this method has created a precise alternative to existing estimation methods. The resulting formula has the potential to be paired with measurements from high-throughput phenotyping methods, such as those facilitated with drones and ground robots, to fully automate the process of collecting head inclination data.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"2783-2790"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21708","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21708","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Sunflower (Helianthus annuus) is a widely cultivated crop that exhibits a trait known as capitulum (or head) inclination at maturity. This trait is influenced by various structural factors, including head weight, stem traits, and plant height. A sunflower head should be at an angle at which the head faces the ground to avoid damage from the sun and birds. While this desired inclination range is known, current methods, including visual estimation and a model of measuring inclined length of the stem, fail to provide precise measurements of angle. This study introduces novel approaches to mathematically measure the head inclination angle. The research, which was conducted over the 2022 and 2023 growing seasons, involved an aluminum rod equipped with a ruler and a digital protractor to measure various height and angle components. Using the data collected, three methods were applied for measuring inclination: a previously published model as a control, a trigonometry-based approach using angle and height measurements, and other model-based approaches. A linear model resulted in a formula to calculate the head angle of any plant based solely on two height measurements, the highest point of the plant at both bloom (R5) and maturity (R9). Calculations of heritability and correlation suggest this method has created a precise alternative to existing estimation methods. The resulting formula has the potential to be paired with measurements from high-throughput phenotyping methods, such as those facilitated with drones and ground robots, to fully automate the process of collecting head inclination data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向日葵头状花序倾角的精确定量测量:基于三角法的方法
向日葵(Helianthus annuus)是一种广泛栽培的作物,成熟时表现出一种称为头状花序(或头)倾斜的性状。这一性状受各种结构因素的影响,包括头重、茎干性状和植株高度。向日葵的头部应朝向地面,以避免阳光和鸟类的伤害。虽然这一理想的倾斜范围是已知的,但目前的方法,包括目测估计和测量茎杆倾斜长度的模型,都无法提供精确的角度测量值。本研究介绍了用数学方法测量头部倾角的新方法。这项研究是在 2022 年和 2023 年的生长季节进行的,研究人员用一根配备了直尺和数字量角器的铝棒来测量各种高度和角度成分。利用收集到的数据,采用了三种方法来测量倾角:一种是以前公布的模型作为对照,另一种是利用角度和高度测量的三角法,还有一种是其他基于模型的方法。线性模型得出了一个公式,可以仅根据两个高度测量值,即开花期(R5)和成熟期(R9)植株的最高点,计算出任何植株的头部角度。对遗传率和相关性的计算表明,这种方法可以精确地替代现有的估算方法。由此得出的公式有可能与高通量表型方法(如无人机和地面机器人)的测量结果相匹配,实现头部倾角数据收集过程的完全自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy Journal
Agronomy Journal 农林科学-农艺学
CiteScore
4.70
自引率
9.50%
发文量
265
审稿时长
4.8 months
期刊介绍: After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.
期刊最新文献
Issue Information Weed management in organic dryland wheat production in the Pacific Northwest Soil health benefits of compost persist two decades after single application to winter wheat Deriving general principles of agroecosystem multifunctionality with the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) network Multiyear productivity and nitrate-nitrogen loss from corn and prairie bioenergy cropping systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1