Abdul Qadir Khan, Guangmin Sun, Majdi Khalid, Majed Farrash, Anas Bilal
{"title":"Multi-Deep Learning Approach With Transfer Learning for 7-Stages Diabetic Retinopathy Classification","authors":"Abdul Qadir Khan, Guangmin Sun, Majdi Khalid, Majed Farrash, Anas Bilal","doi":"10.1002/ima.23213","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Proposed novel investigation focused on leveraging an innovative diabetic retinopathy (DR) dataset comprising seven severity stages, an approach not previously examined. By capitalizing on this unique resource, this study′s findings set a new benchmark for DR classification, highlighting the transformative potential of incorporating advanced data into AI models. This study developed a Vgg16 transfer learning model and gauged its performance against established algorithms including Vgg-19, AlexNet, and SqueezeNet. Remarkably, our results achieved accuracy rates of 96.95, 96.75, 96.09, and 92.96, respectively, emphasizing the contribution of our work. We strongly emphasized comprehensive severity rating, yielding perfect and impressive F1-scores of 1.00 for “mild NPDR” and 97.00 for “no DR signs.” The Vgg16-TL model consistently outperformed other models across all severity levels, reinforcing the value of our discoveries. Our deep learning training process, carefully selecting a learning rate of 1e-05, allowed continuous refinements in training and validation accuracy. Beyond metrics, our investigation underscores the vital clinical importance of precise DR classification for preventing vision loss. This study conclusively establishes deep learning as a powerful transformative tool for developing effective DR algorithms with the potential to improve patient outcomes and advance ophthalmology standards.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23213","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Proposed novel investigation focused on leveraging an innovative diabetic retinopathy (DR) dataset comprising seven severity stages, an approach not previously examined. By capitalizing on this unique resource, this study′s findings set a new benchmark for DR classification, highlighting the transformative potential of incorporating advanced data into AI models. This study developed a Vgg16 transfer learning model and gauged its performance against established algorithms including Vgg-19, AlexNet, and SqueezeNet. Remarkably, our results achieved accuracy rates of 96.95, 96.75, 96.09, and 92.96, respectively, emphasizing the contribution of our work. We strongly emphasized comprehensive severity rating, yielding perfect and impressive F1-scores of 1.00 for “mild NPDR” and 97.00 for “no DR signs.” The Vgg16-TL model consistently outperformed other models across all severity levels, reinforcing the value of our discoveries. Our deep learning training process, carefully selecting a learning rate of 1e-05, allowed continuous refinements in training and validation accuracy. Beyond metrics, our investigation underscores the vital clinical importance of precise DR classification for preventing vision loss. This study conclusively establishes deep learning as a powerful transformative tool for developing effective DR algorithms with the potential to improve patient outcomes and advance ophthalmology standards.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.