{"title":"Constraining the Duration and Ages of Stratigraphic Unconformities on Mars Using Exhumed Craters","authors":"A. M. Annex, K. W. Lewis","doi":"10.1029/2023JE008073","DOIUrl":null,"url":null,"abstract":"<p>Crater counting is a widely applied methodology for dating large areas of planetary surfaces, but is difficult to apply the method to constrain the durations of stratigraphic unconformities. Unconformities with exhumed craters are thought to indicate long hiatuses that can only be indirectly dated through stratigraphic relationships with other surfaces with uniform exposure ages. On Mars, sedimentary deposits with prominent unconformities with exhumed craters are found in layered deposits in the Arabia Terra region as well as Gale crater within Mount Sharp. In this work, we present a Linear Crater Counting methodology and apply it to constrain these unconformities observed in Arabia Terra and in Mount Sharp. The method applies a linear sampling domain correction to conventional two-dimensional crater size frequency distributions and Bayesian Poisson process statistics in order to constrain the likely durations of these unconformities. We found that unconformities in Arabia Terra were on the order of 0.1–1 Gyr in length and that the unconformity preserved at Mount Sharp is at least 0.2 Gyr in length given estimates of the ages of the host craters. Hiatuses of these lengths constrain the age of the overlying deposits to be Late Hesperian or Amazonian in age. Two utility plots are also provided, along with the derivation, for researchers to apply this method to dating arbitrary geologic contacts on Mars and to adapt it to other bodies.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008073","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Crater counting is a widely applied methodology for dating large areas of planetary surfaces, but is difficult to apply the method to constrain the durations of stratigraphic unconformities. Unconformities with exhumed craters are thought to indicate long hiatuses that can only be indirectly dated through stratigraphic relationships with other surfaces with uniform exposure ages. On Mars, sedimentary deposits with prominent unconformities with exhumed craters are found in layered deposits in the Arabia Terra region as well as Gale crater within Mount Sharp. In this work, we present a Linear Crater Counting methodology and apply it to constrain these unconformities observed in Arabia Terra and in Mount Sharp. The method applies a linear sampling domain correction to conventional two-dimensional crater size frequency distributions and Bayesian Poisson process statistics in order to constrain the likely durations of these unconformities. We found that unconformities in Arabia Terra were on the order of 0.1–1 Gyr in length and that the unconformity preserved at Mount Sharp is at least 0.2 Gyr in length given estimates of the ages of the host craters. Hiatuses of these lengths constrain the age of the overlying deposits to be Late Hesperian or Amazonian in age. Two utility plots are also provided, along with the derivation, for researchers to apply this method to dating arbitrary geologic contacts on Mars and to adapt it to other bodies.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.